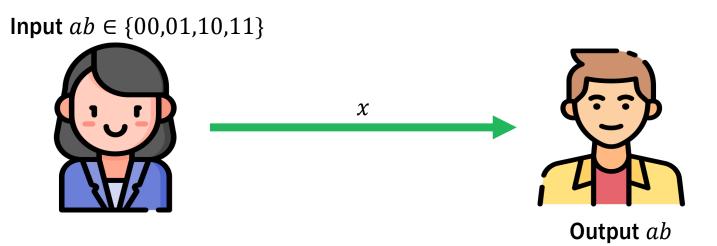
QUANTUM Shannon Theory

Anish Banerjee (ELL714: Basic Information Theory)

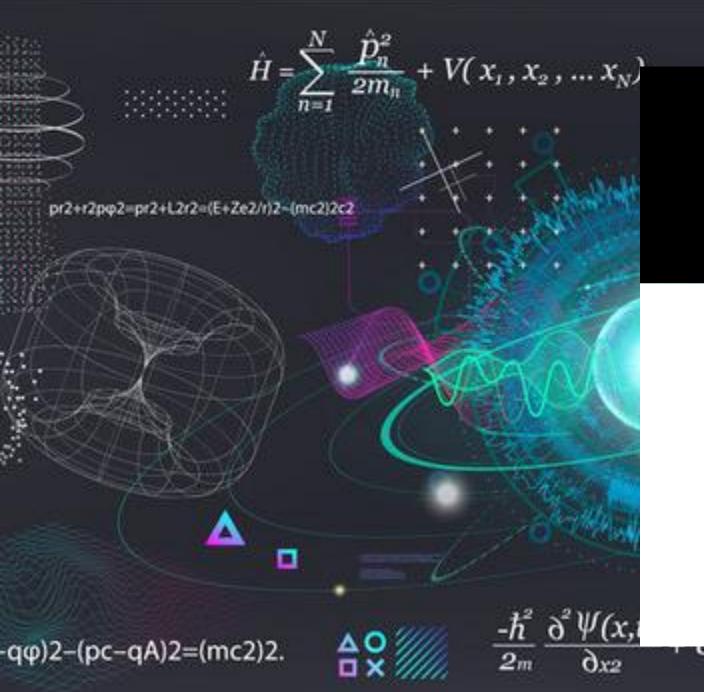
MOTIVATING EXAMPLE

Alice wants to convey two classical bits to Bob sending only one bit



Alice can convey both bits if she can send a qubit!

(given that they pre-share an entangled state)



AGENDA

Mathematical Formalism Analogues of Shannon's Theorems:

Data Compression

Channel Capacity

91

STRANGE PROPERTIES OF QUANTUM INFORMATION

Quantum states cannot be copied

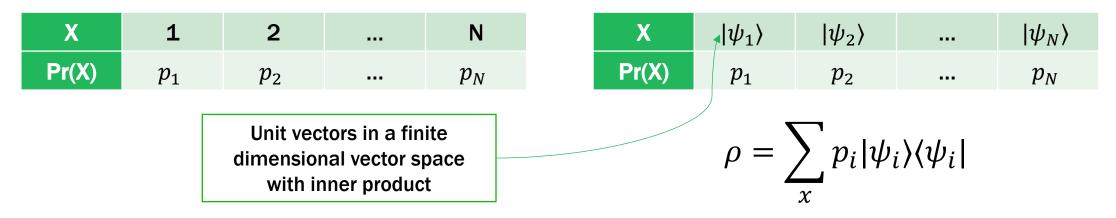
Quantum states cannot be perfectly distinguished

Quantum states can share entanglement

INFORMATION SOURCE

CLASSICAL

Modelled as a random variable X over a source alphabet Σ :



QUANTUM

Modelled as a density matrix ρ

over quantum states:

EXAMPLE

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
$$|0\rangle\langle 0| = \begin{pmatrix} 1\\0 \end{pmatrix} (1\ 0) = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}$$
$$|+\rangle\langle +| = \frac{1}{2} \begin{pmatrix} 1\\1 \end{pmatrix} (1\ 1) = \frac{1}{2} \begin{pmatrix} 1&1\\1&1 \end{pmatrix}$$
$$\rho = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |+\rangle\langle +| = \frac{1}{4} \begin{pmatrix} 3&1\\1&1 \end{pmatrix}$$

Properties of ρ :

- Unit Trace
 - $tr(\rho) = 1$
- Positive Semidefinite $\langle \psi | \rho | \psi \rangle \geq 0$
- **Ensemble:** $\{p_i, \rho_i\}$

$$\rho = \sum_{i} p_i \rho_i$$

ENTANGLEMENT

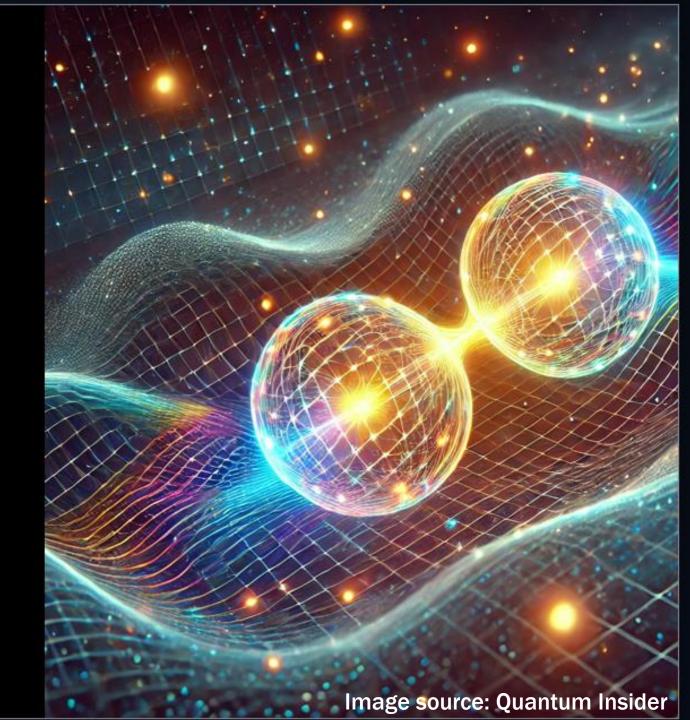
A state of a composite system AB is separable if

 $|\psi\rangle_{\rm AB} = |\psi\rangle_{\rm A} \otimes |\psi\rangle_{\rm B}$

Otherwise, it is said to be entangled.

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

"Spooky action at a distance"



FUNCTIONS OF OPERATORS

Spectral Decomposition Theorem

$$\rho = \sum_{k} \lambda_{k} |k\rangle \langle k|$$

- λ_k : Eigenvalues (positive)
- |k): Eigenvectors (orthonormal)

$$f(\rho) = \sum_{k} f(\lambda_{k})|k\rangle\langle k|$$
$$\log(\rho) = \sum_{k} \log\lambda_{k}|k\rangle\langle k|$$
$$\rho\log(\rho) = \sum_{k} \lambda_{k}\log\lambda_{k}|k\rangle\langle k|$$
$$S(\rho) = -\operatorname{tr}(\rho\log\rho) = -\sum_{k} \lambda_{k}\log\lambda_{k}$$

DATA COMPRESSION: SHANNON V/S SCHUMACHER

{X_i} : i.i.d. information source with Shannon entropy H(X)

 $R>H(X) \leftrightarrow \exists$ a reliable compression scheme of rate R

Alphabet	{1,2,3, }	$\{ \phi_1 angle, \phi_2 angle, \phi_3 angle,\}$
Information Source	X	$\rho = \sum_{x} p_{x} \phi_{x}\rangle \langle \phi_{x} $
Typical	Sequence	Subspace
Entropy	H(X)	$S(\rho)$

 $\{|\psi_i\rangle\}$: i.i.d. quantum information source with Von Neumann entropy S(ρ) R>S(ρ) $\leftrightarrow \exists$ a reliable compression scheme of rate R

QUANTUM CHANNELS

A channel which can transmit quantum and classical information.

Also known as a quantum operation

Modelled as a **Completely Positive Trace Preserving Map**:

$$\rho \longrightarrow \Phi(\rho)$$

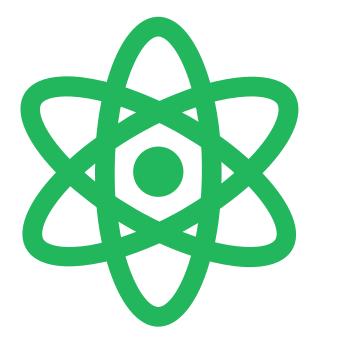
CLASSICAL INFORMATION VIA QUANTUM CHANNELS

Not completely solved.

If the sender can only produce product states:

Theorem [Holevo-Schumacher-Westmoreland (HSW)]

$$C^{(1)}(\Phi) = \max_{\{p_i,\rho_i\}} \left[S\left(\Phi\left(\sum_j p_j\rho_j\right)\right) - \sum_j p_j S(\Phi(\rho_j)) \right]$$

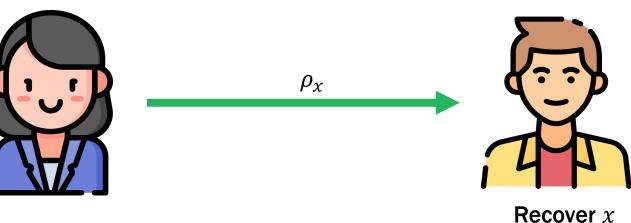


QUANTUM INFORMATION VIA QUANTUM CHANNELS?

THE HOLEVO BOUND

Alice wants to send a **classical message** to Bob by encoding it in a **quantum state**.

 $\{p_i, \rho_i\}_{i \in [n]}$



Whatever measurement Bob performs:

$$I(X:Y) \le S(\rho) - \sum_{i} p_i S(\rho_i)$$

Corollary: n qubits cannot transmit more than n bits.

THANK YOU