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Non-
Committing 
Encryption

Extensively studied in fields 
like Multi-Party 
Computation (MPC).

Allows equivocation of 
ciphertexts.

Provides randomness that can 
"explain" a ciphertext as an 
encryption of any message.



Real World (PKE)

C Apk

m*

ct*

rSetup, rEnc

“Explanation” of the encryption
(pk, sk) ← Setup(; rSetup)
ct* ← Enc(pk, m*; rEnc)

(pk, sk)← Setup(;rSetup)

ct*← Enc(pk, m*; rEnc)



Ideal World 

C
(pk, ct*) ← Sim()

(rSetup, rEnc) ← Sim(m*)

Apk

m*

ct*

rSetup, rEnc

“Explanation” of the encryption
(pk, sk) ← Setup(; rSetup)
ct* ← Enc(pk, m*; rEnc)

Security: Real and Ideal worlds are computationally indistinguishable

(pk, ct*) ← Sim()

(rSetup, rEnc) ← Sim(m*)



Trapdoor Functions (TDF)

Source: Wikipedia (Edited)
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The Random Oracle Model [BR93]

Model H as a truly random function

Only oracle access allowed

Real World: H is instantiated as a cryptographic hash function 

Random 
Oracle



Nielsen’s Construction (Real World)

C
(pk, td) ← TDF.Setup(;rSetup)

Sample random r
ct* ← (fpk(r), H(r) ⊕ m*)

Apk

m*

ct*

rSetup, rEnc=r



Nielsen’s Construction (Ideal World)

C
(pk, td) ← TDF.Setup(;rSetup)

Sample random r and y
ct* ← (fpk(r), y)

Set H(r) = y ⊕ m*

A
pk

m*

ct*

rSetup, rEnc=r

Argue that probability of querying r is negligible (TDF)



Our result

∙ Nielsen’s NCE construction is also secure in the Quantum 
Random Oracle Model.

∙ This construction suffers a security loss in the quantum realm.

A wins the NCE game with 
probability ε ⇒ B breaks the security 

of the TDF with probability

Classical ε

Quantum (ε/2q)2

Number of queries made 
by A to the random oracle



The Quantum Random Oracle Model [BFD+11]

Why should we consider 
quantum access to the RO?

Adversary can make 
superposition queries!

Not clear how to make an 
analogous argument.

Quantum 
Random 
Oracle



One—Way to Hiding [Unr14]

∙ Suppose G and H only differ only on one x*.

∙ Adversary cannot tell them apart without querying x* with some 
amplitude.

∙ Simulator randomly chooses a query, stops A and measures its query 
register. 

∙ Let Guess be the event that the measurement outcome is x*.

|Pr[1 ← AH] – Pr[1 ← AG]| ≤ 2q (Pr[Guess])1/2 



Proof Sketch

C
(pk, td) ← TDF.Setup(; rSetup)

Sample random r and y 
ct* ← (fpk(r), y)

Set H(r) = y ⊕ m*
rEnc = r

A

         
        

pk

m*

ct*

rSetup, rEnc

A0

A1

A2

Observation: A can distinguish 
between the real and simulated worlds 
only if A0  or A1 query H on r.

Since the only information about r provided 
to A is in the form of fpk(r), using the one-way 
to hiding lemma we have

|Preal – Psim| ≤ 2q (Pguess)1/2

If |Preal – Psim|= ε is non-negligible then we 
break the security of the trapdoor function 
with probability (ε/2q)2



Future Work

∙ Explore quantum NCEs
o Formalize definitions and security notions 

o qNCEs from quantum secure one-way 
functions?

∙ Understand the security-loss in the 
quantum setting.

∙ Understanding the security of other 
ROM proofs in qROM



Thank You!
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