

CLASSICAL VERIFICATION OF QUANTUM COMPUTATIONS

COL872: Lattices in CS Anish Banerjee Shankh Gupta Based on the [Mah23] of the same name

Main Results (Informal)

LWE is hard for a BQP machine

There exists an **extended trapdoor claw-free family**.

All decision problems in BQP can be verified by an efficient classical machine through interaction.

Measurement Protocol

Goal: Force the prover to behave as the verifier's trusted measurement device

Relation to this course

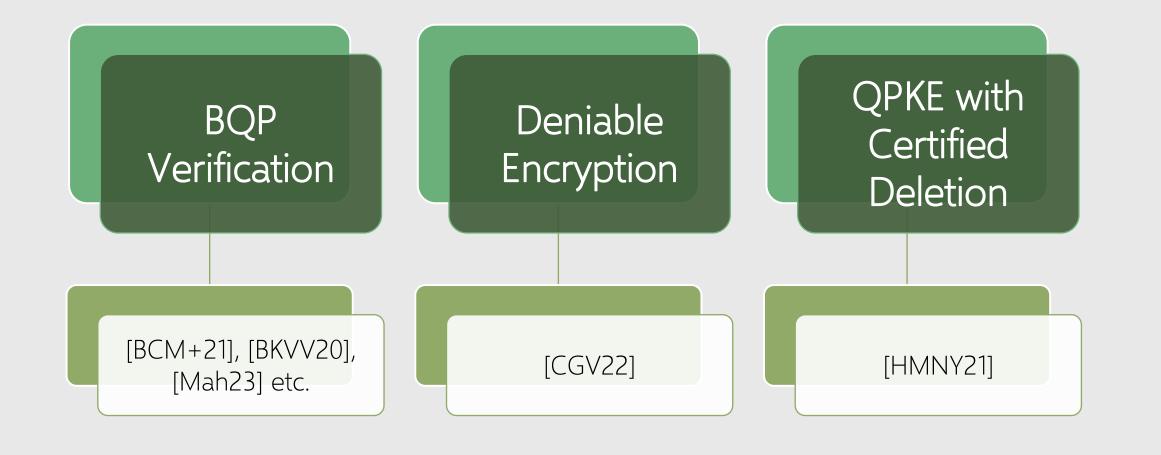
ETCFs are built using LWE.

Extensively used in the construction of several verification protocols.

However, we only have **approximate constructions**.

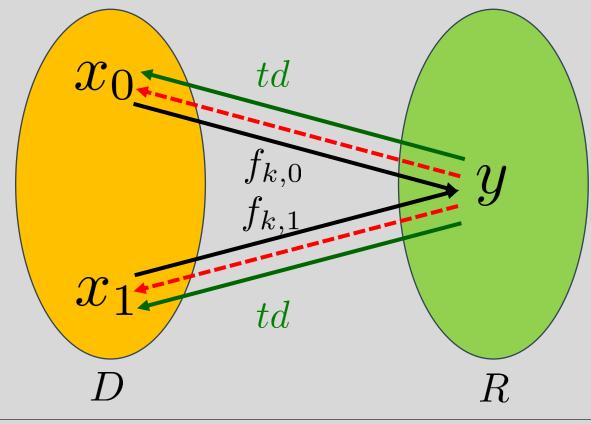
We want to study these constructions and understand why we don't have exact.

Why should you study this?



Trapdoor Claw-free functions

 $f_{k,0}, f_{k,1}: D \to R$ Injective, same range

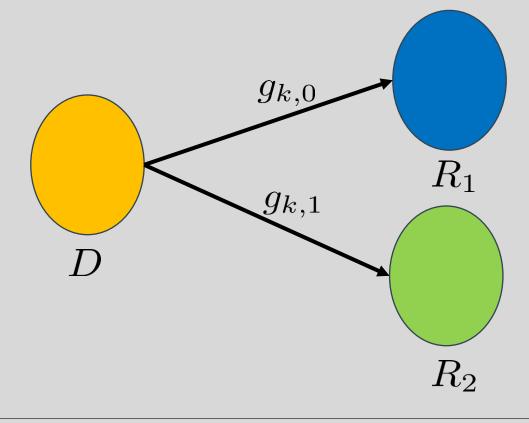


Hard to find a **claw** (x_0, x_1) such that $f_{k,0}(x_0) = fk_1(x_1)$ without *td*.

Also satisfies two other adaptive hardcore bit properties.

Trapdoor Injective Functions

 $g_{k,0}, g_{k,1}: D \to R$ Injective, disjoint range



Given $y = gk_b(x)$, hard to find (b, x) without td.

ETCF=TCF+TIF+Injective Invariance

Hard to distinguish between (f_0, f_1) and (g_0, g_1)

Unfortunately, we don't have **exact** constructions!

Truncated Discrete Gaussian

$$D_{\mathbb{Z}_{q},B}(x) = \frac{e^{\frac{-\pi \|x\|^{2}}{B^{2}}}}{\sum_{x \in \mathcal{D}} e^{\frac{-\pi \|x\|^{2}}{B^{2}}}} \qquad \mathcal{D} = \{x \in \mathbb{Z}_{q} \mid \|x\| \le B\}$$

 $D_{\mathbb{Z}_q^m,B}(\mathbf{x}) = D_{\mathbb{Z}_q,B}(x_1)D_{\mathbb{Z}_q,B}(x_2)\dots D_{\mathbb{Z}_q,B}(x_m) \quad \mathcal{D}^m = \{\mathbf{x}\in\mathbb{Z}_q^m \mid \|\mathbf{x}\|\leq B\sqrt{m}\}$

Trapdoors from Lattices

Theorem [MP11]

There is an efficient algorithm

 $(\mathbf{A}, td_{\mathbf{A}}) \leftarrow \text{GenTrap}()$

 $^{\circ}$ Distribution of Approx Uniform Distribution

Efficient Inversion

 $(s, e) \leftarrow \text{Invert}(A, td_A, As + e)$ $||e|| \leq \frac{q}{C_T \sqrt{n \log q}} = 2B_P \sqrt{m}$ q: Modulus, A is of dimension $m \ge n$

Parameters

$$m = \Omega(n \log q)$$

$$B_L < B_V < B_P$$

$$B_P = \frac{q}{2C_T \sqrt{mn \log q}}$$

$$\frac{B_P}{B_V}, \frac{B_V}{B_L} \text{ are super-polynomial}$$

• The range of the functions is a probability density D_Y over Y $(f_{k,b}(\mathbf{x}))(\mathbf{y}) = D_{\mathbb{Z}_q^m, B_P}(\mathbf{y} - \mathbf{A}\mathbf{x} - b\mathbf{A}\mathbf{s})$

- The trapdoor injective pair property is defined in terms of support of the densities
 claw: identical supports
- We require an QPT procedure which generates the state

$$\frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \sqrt{(f_{k,b}(x))(y)} |x\rangle |y\rangle$$

• Not possible!

• We will create an approximation of this using a related family

Efficient Function Generation

 \circ (*k*, *td*) \leftarrow Gen()

$$\circ (\mathbf{A}, td_{\mathbf{A}}) \leftarrow \text{GenTrap}()$$

$$\circ \mathbf{s} \leftarrow \mathbb{Z}_{q}^{n} \qquad \mathbf{e} \leftarrow_{D_{\mathbb{Z}_{q}^{m}, B_{V}}} \mathbb{Z}_{q}^{m}$$

$$\circ k = (\mathbf{A}, \mathbf{As} + \mathbf{e}), td = td_{\mathbf{A}}$$

Trapdoor Injective Pair

• Trapdoor: For every $y \in \text{Supp}(f_{k,b}(x))$ $x \leftarrow \text{Inv}_F(k, td, b, y)$

• Injective Pair: Perfect matching R_k

 $f_{k,0}(x_0) = f_{k,1}(x_1) \Leftrightarrow (x_0, x_1) \in \mathcal{R}_k$

 $(f_{k,b}(\mathbf{x}))(\mathbf{y}) = D_{\mathbb{Z}_q^m, B_p}(\mathbf{y} - \mathbf{A}\mathbf{x} - b\mathbf{A}\mathbf{s})$ SUPP $(f_{k,0}(\mathbf{x})) = \left\{ \mathbf{A}\mathbf{x} + \mathbf{e}_0 | \|\mathbf{e}_0\| \le B_p\sqrt{m} \right\}$ SUPP $(f_{k,1}(\mathbf{x})) = \left\{ \mathbf{A}(\mathbf{x} + \mathbf{s}) + \mathbf{e}_0 | \|\mathbf{e}_0\| \le B_p\sqrt{m} \right\}$

 $(\mathbf{x} + b\mathbf{s}, \mathbf{e}_0) \leftarrow \text{Invert}(\mathbf{A}, \mathsf{td}, \mathbf{y})$

The inversion works due to our choice of B_P

Perfect matching: $(x, x - s) \in R_k$

Efficient Range Superposition

• Inversion: For all $(x_0, x_1) \in R_k$ and $y \in \text{Supp}(f'_{k,b}(x_b))$ $x_b \leftarrow \text{INV}_{\mathcal{F}}(\mathsf{td}, b, y)$ $x_{b \oplus 1} \leftarrow \text{INV}_{\mathcal{F}}(\mathsf{td}, b \oplus 1, y)$ • Check: Chk_F(k, b, x, y) tells if $y \in \text{Supp}(f'_{k,b}(x))$ \circ Close to *F*: $\mathbb{E}_{x \leftarrow \mathcal{X}}[H^2(f_{k,b}(x), f'_{k,b}(x)] \le \operatorname{negl}(\lambda)$ • Efficient Sampling: $\frac{1}{\sqrt{|\mathcal{X}|}} \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \sqrt{f'_{k,b}(x)} |x\rangle |y\rangle \leftarrow \text{SAMP}_{\mathcal{F}}(k,b)$ No longer have the perfect matching property!

Efficient Range Superposition (Construction)

$$(f'_{k,b}(\mathbf{x}))(\mathbf{y}) = D_{\mathbb{Z}_q^m, B_V}(\mathbf{y} - \mathbf{A}\mathbf{x} - b(\mathbf{A}\mathbf{s} + \mathbf{e}))$$

Inversion

$$\operatorname{SUPP}(f_{k,0}'(x)) = \left\{ \mathbf{A}\mathbf{x} + \mathbf{e}_0 | \|\mathbf{e}_0\| \le B_p \sqrt{m} \right\}$$
$$\operatorname{SUPP}(f_{k,1}'(x)) = \left\{ \mathbf{A}(\mathbf{x} + \mathbf{s}) + \mathbf{e}_0 + \mathbf{e} | \|\mathbf{e}_0\| \le B_p \sqrt{m} \right\}$$

Invert still works!

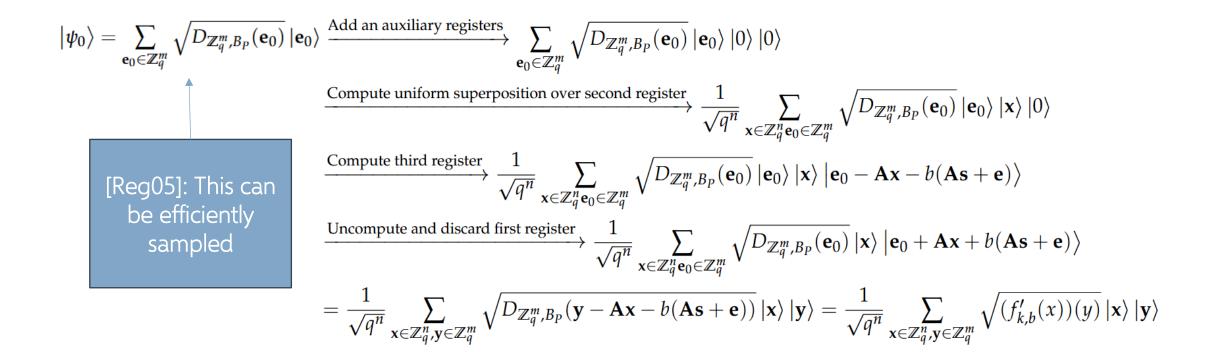
Check(k,b,x,y)
$$\left\| \mathbf{y} - \mathbf{A}\mathbf{x} - b'(\mathbf{A}\mathbf{s} + \mathbf{e}) \right\| \leq B_P \sqrt{m}$$

Check for which b' this is true

Close to F

 $f_{k,1}(x)$ and $f'_{k,1}(x)$ are Discrete Gaussians separated by e

$$H^{2}(f_{k,1}(\mathbf{x}), f_{k,1}'(\mathbf{x})) \leq 1 - e^{\frac{-2\pi m B_{V}}{B_{P}}} \leq \frac{2\pi m B_{V}}{B_{P}}$$



EFFICIENT RANGE SUPERPOSITION (SAMPLING)

TIF FAMILY

$$k = (A, u)$$

 $(g_{k,b}(x))(y) = D_{\mathbb{Z}_q^m, B_P}(\mathbf{y} - \mathbf{A}\mathbf{x} - b\mathbf{u})$

Efficient Function Generation

 \circ (k, td) \leftarrow Gen()

 \circ (*A*, *td*_{*A*}) \leftarrow GenTrap() $\circ \boldsymbol{u} \leftarrow \mathbb{Z}_q^m$. If $(s, e) \leftarrow \text{Invert}(A, td_A, u)$ such that u = As + e and $||\boldsymbol{e}|| \leq 2B_P \sqrt{m}$ then reject and resample. $\circ k = (\mathbf{A}, \mathbf{u}), td = td_{\mathbf{A}}$

Disjoint Trapdoor Injective Pair

• Trapdoor: For every $y \in \text{Supp}(g_{k,b}(x))$ $(b, x) \leftarrow \text{Inv}_G(k, td, y)$

∘ Disjoint Injective Pair: $(b, x) \neq (b', x') \Leftrightarrow$ $\operatorname{Supp}(g_{k,b}(x)) \cap \operatorname{Supp}(g_{k,b'}(x')) = \phi$ $(g_{k,b}(x))(y) = D_{\mathbb{Z}_{q}^{m},B_{p}}(\mathbf{y} - \mathbf{A}\mathbf{x} - b\mathbf{u})$ $SUPP(g_{k,0}(x)) = \left\{\mathbf{A}\mathbf{x} + \mathbf{e}_{0} | \|\mathbf{e}_{0}\| \leq B_{p}\sqrt{m}\right\}$ $SUPP(g_{k,1}(x)) = \left\{\mathbf{A}\mathbf{x} + \mathbf{e}_{0} + \mathbf{u} | \|\mathbf{e}_{0}\| \leq B_{p}\sqrt{m}\right\}$ $(\mathbf{A}\mathbf{x} + \mathbf{e}_{0} + \mathbf{u} | \|\mathbf{e}_{0}\| \leq B_{p}\sqrt{m}$

Efficient Range Superposition

• Check: $Chk_G(k, b, x, y)$ tells if $y \in Supp(g_{k,b}(x))$

• Efficient Sampling:

$$\frac{1}{\sqrt{|\mathcal{X}|}} \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \sqrt{g_{k,b}(x)} |x\rangle |y\rangle \leftarrow \text{Samp}_{\mathcal{G}}(k,b)$$

Use the same functions as in NTCF family.

Injective Invariance

The functions Chk_F, Samp_F are the same as Chk_G, Samp_G
 No QPT adversary can distinguish between the outputs of the generation algorithms of F and G

$$\mathcal{D}_0 = \{ (\mathbf{A}, \mathbf{As} + \mathbf{e}) \leftarrow \operatorname{GEN}_{\mathcal{F}_{LWE}}(1^{\lambda}) \}$$
$$\mathcal{D}_1 = \{ (\mathbf{A}, \mathbf{u}) \leftarrow \operatorname{GEN}_{\mathcal{G}_{LWE}}(1^{\lambda}) \}$$

Reduces to hardness of LWE!

Hardcore Bit Properties - Overview

Adaptive Hardcore Bit

Hard to find (x_b, d) such that $(d \neq 0)$ and $d \cdot (x_0 + x_1) = 0$

Hardcore Bit 2

There exists a string d such that for all claws (x_0, x_1)

 $d \cdot (x_0 + x_1)$ is the same bit and is hard to compute

For any QPT Adversary ${\cal A}$,

$$\left| \mathsf{Pr}_{(k,\mathsf{td})\leftarrow\mathsf{GEN}(1^{\lambda})}[\mathcal{A}(k)\in H_s] - \mathsf{Pr}_{(k,\mathsf{td})\leftarrow\mathsf{GEN}(1^{\lambda})}[\mathcal{A}(k)\in\bar{H}_s] \right| \le \mathsf{negl}(\lambda)$$

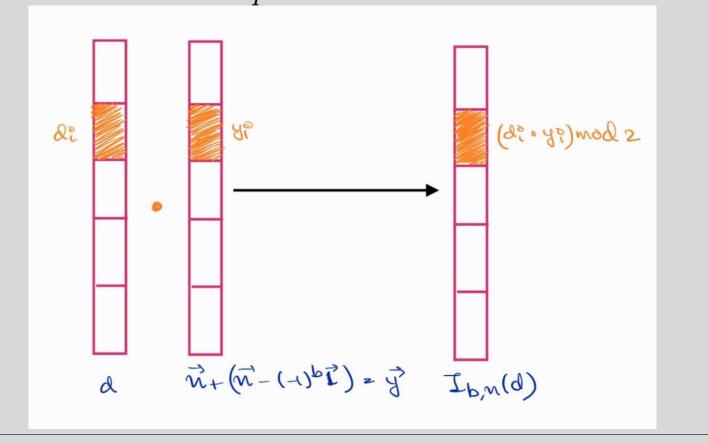
where,

$$H_s = \{ (b, x, d, d \cdot (x + (x - (-1)^b s))) \}$$

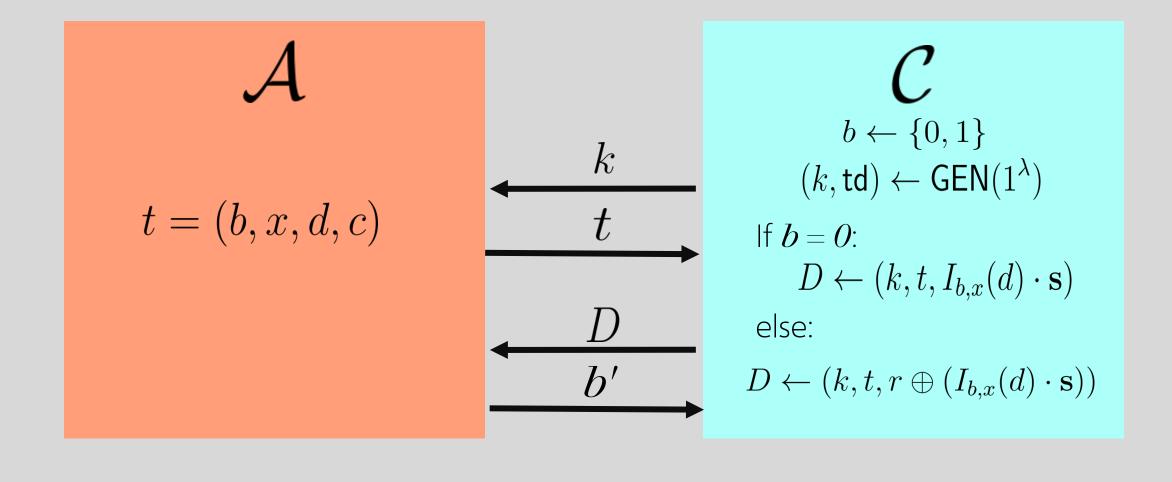
$$\bar{H}_s = \{ (b, x, d, c \oplus 1 | (b, x, d, c) \in H_s \}$$

Mapping $I_{b,x}(d)$

- Defined to be the inner product of d and $(x + (x (-1)^b \mathbf{1}))$
- Each entry of x belongs to \mathbb{Z}_q . So first convert it into binary.



Adaptive Hardcore Bit – Security Game



Adaptive Hardcore Bit – Security Game

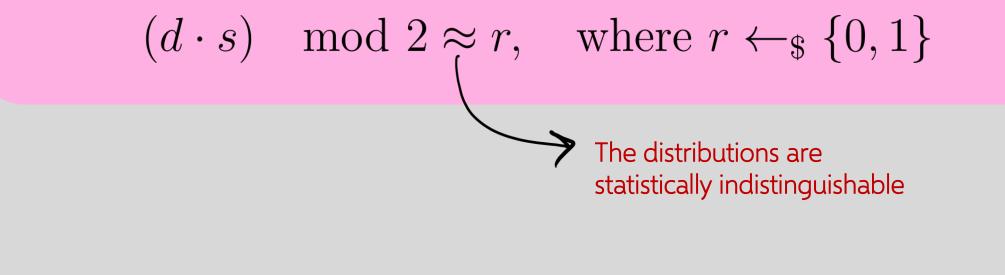
Claim : The AHB security game implies the former definition

Proof: Just trust me \mathfrak{S} Intuition: Observe $d \cdot (x + (x - (-1)^b)s) = I_{b,x}(d) \cdot s$

We know prove that any QPT adversary cannot have non-negligible advantage in our security game.

Moderate Matrix Lemma

Given a close to uniform matrix **C** (fixed) and a vector **Cs** the following holds with a very high probability:



Adaptive Hardcore Bit – Security Game

Thus, using the Moderate Matrix Lemma, we can directly say that the two distributions

$$D_0 = ((\mathbf{A}, \mathbf{A}s + e), (b, x, d, c) \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{A}s + e), I_{b,x}(d) \cdot s)$$

and
$$D_1 = ((\mathbf{A}, \mathbf{A}s + e), (b, x, d, c) \leftarrow \mathcal{A}(\mathbf{A}, \mathbf{A}s + e), r \oplus (I_{b,x}(d) \cdot s))$$

are computationally indistinguishable.

Hardcore Bit 2

There exists a string d, such that for all Quantum poly-time adversaries ${\cal A}$,

$$\left| \Pr_{(k, \mathsf{td}) \leftarrow \mathsf{GEN}(1^{\lambda})} [\mathcal{A}(k) = b] - \frac{1}{2} \right| \le \mathsf{negl}(1^{\lambda})$$

where,

$$b = d \cdot (x_0 + x_1), \quad (x_0, x_1) \in \mathcal{R}_k$$

Hardcore Bit 2 – Alternative Version

For all strings d, for any QPT adversary \mathcal{A} , the distributions $D_0 = ((\mathbf{A}, \mathbf{A}s + e), d \cdot s)$ and $D_1 = ((\mathbf{A}, \mathbf{A}s + e), r), \quad \text{where } r \leftarrow_{\$} \{0, 1\},$ are computationally indistinguishable.

- The above definition implies the former one. (for any choice of string d)
- The distributions D_o and D_i above are computationally indistinguishable using the Moderate Matrix Lemma.

Our Contributions

We simplified the proof of Hardcore-Bit properties by slightly tweaking the Moderate Matrix Lemma.

□ We attempted to construct exact TCFs.

Irina Blok