
CLASSICAL
VERIFICATION OF

QUANTUM
COMPUTATIONS

(PART2: FUNCTION CONSTRUCTIONS)

COL872: Lattices in CS

Anish Banerjee Shankh Gupta

Based on the [Mah23] of the same name

Quantum
Cat

Classical
Leash

Main Results
(Informal)

LWE is hard for a BQP machine

There exists an extended trapdoor claw-free family.

All decision problems in BQP can be verified by an

efficient classical machine through interaction.

Measurement Protocol
Goal: Force the prover to behave as the verifier's trusted measurement device

….
≡

+
H/S

ρMeasurement

Protocol

Ideal

Behaviour

Relation to this
course

ETCFs are built using LWE.

Extensively used in the construction of

several verification protocols.

However, we only have approximate

constructions.

We want to study these constructions and

understand why we don’t have exact.

Why should you study this?

BQP

Verification

[BCM+21], [BKVV20],

[Mah23] etc.

Deniable

Encryption

[CGV22]

QPKE with

Certified

Deletion

[HMNY21]

Trapdoor Claw-free functions

Hard to find a claw

(𝑥0, 𝑥1) such that

𝑓𝑘, 0 𝑥0 = 𝑓𝑘
, 1 𝑥1

without 𝑡𝑑.

Also satisfies two other

adaptive hardcore bit

properties.

Trapdoor Injective Functions

Given 𝑦 = 𝑔𝑘
, 𝑏(𝑥), hard to find

(𝑏, 𝑥) without 𝑡𝑑.

ETCF=TCF+TIF+Injective Invariance

Hard to distinguish

between (f0,f1) and (g0,g1)

Unfortunately, we don’t have

exact constructions!

Truncated Discrete Gaussian

Trapdoors from Lattices

Theorem [MP11]
 There is an efficient algorithm

𝑨, 𝑡𝑑𝑨 ← GenTrap()

◦ Distribution of 𝑨 ≈ Uniform Distribution

◦ Efficient Inversion

(𝒔, 𝒆) ← Invert(𝑨, 𝑡𝑑𝑨, 𝑨𝒔 + 𝒆)

𝒆 ≤
𝑞

𝐶𝑇 𝑛 log q
= 2𝐵𝑃 𝑚

𝑞: Modulus, 𝑨 is of dimension 𝑚 x 𝑛

Parameters

𝑚 = Ω(𝑛 log 𝑞)

𝐵𝐿 < 𝐵𝑉 < 𝐵𝑃

𝐵𝑃 =
𝑞

2𝐶𝑇 𝑚𝑛 log q

𝐵𝑃

𝐵𝑉
,

𝐵𝑉

𝐵𝐿
 are super-polynomial

Noisy-TCF Family

◦ The range of the functions is a probability density 𝐷𝑌 over 𝑌

◦ The trapdoor injective pair property is defined in terms of support of the densities

◦ claw: identical supports

◦ We require an QPT procedure which generates the state

◦ Not possible!

◦ We will create an approximation of this using a related family

Efficient Function Generation

◦ 𝑘, 𝑡𝑑 ← Gen() ◦ 𝑨, 𝑡𝑑𝑨 ← GenTrap()

◦ 𝒔 ← ℤ𝑞
𝑛 𝒆 ←𝐷ℤ𝑞

𝑚, 𝐵𝑉
ℤ𝑞

𝑚

◦𝑘 = 𝑨, 𝑨𝒔 + 𝒆 , 𝑡𝑑 = 𝑡𝑑𝑨

The inversion works due to our choice of 𝐵𝑃

Perfect matching: 𝒙, 𝒙 − 𝒔 ∈ 𝑅𝑘

Trapdoor Injective Pair

◦ Trapdoor: For every 𝑦 ∈ Supp fk,b x

𝑥 ← Inv𝐹(k, td, b, y)

◦ Injective Pair: Perfect matching 𝑅𝑘

Efficient Range Superposition

◦ Inversion: For all 𝑥0, 𝑥1 ∈ 𝑅𝑘 and 𝑦 ∈ Supp(𝑓′𝑘,𝑏 𝑥𝑏)

◦ Check: Chk𝐹(k, b, x, y) tells if 𝑦 ∈ Supp 𝑓𝑘,𝑏
′ (𝑥)

◦ Close to F:

◦ Efficient Sampling:

No longer have the perfect matching property!

Efficient Range Superposition (Construction)

Invert still works!
Check for which 𝑏’ this is true

𝑓𝑘,1 𝑥 and 𝑓′𝑘,1 𝑥 are Discrete

Gaussians separated by 𝒆

Inversion
Check(k,b,x,y)

Close to F

EFFICIENT RANGE SUPERPOSITION (SAMPLING)

[Reg05]: This can

be efficiently

sampled

TIF FAMILY
𝑘 = (𝑨, 𝒖)

Efficient Function Generation

◦ 𝑘, 𝑡𝑑 ← Gen() ◦ 𝑨, 𝑡𝑑𝑨 ← GenTrap()

◦ 𝒖 ← ℤ𝑞
𝑚. If

𝒔, 𝒆 ← Invert 𝑨, 𝑡𝑑𝑨, 𝒖

such that 𝒖 = 𝑨𝒔 + 𝒆 and

𝒆 ≤ 2𝐵𝑃 𝑚 then reject and

resample.

◦ 𝑘 = 𝑨, 𝒖 , 𝑡𝑑 = 𝑡𝑑𝑨

Disjoint Trapdoor Injective Pair

◦ Trapdoor: For every 𝑦 ∈ Supp gk,b x

(𝑏, 𝑥) ← Inv𝐺(k, td, y)

◦ Disjoint Injective Pair:

𝑏, 𝑥 ≠ 𝑏′, 𝑥′ ⇔

 Supp gk,b x ∩ Supp gk,b′ x′ = 𝜙

Efficient Range Superposition

◦ Check: Chk𝐺(k, b, x, y) tells if 𝑦 ∈

Supp 𝑔𝑘,𝑏 (𝑥)

◦ Efficient Sampling:

Use the same functions as in

NTCF family.

◦ The functions Chk𝐹 , Samp𝐹 are the same as Chk𝐺 , Samp𝐺

◦ No QPT adversary can distinguish between the outputs of the generation

algorithms of 𝐹 and 𝐺

Reduces to hardness of LWE!

Injective Invariance

Hardcore Bit Properties - Overview

Hard to find such that
There exists a string d such that

for all claws

Adaptive Hardcore Bit Hardcore Bit 2

is the same bit and is hard to

compute

Adaptive Hardcore Bit

For any QPT Adversary ,

where,

Mapping

• Defined to be the inner product of d and

• Each entry of x belongs to . So first convert it into binary.

Adaptive Hardcore Bit – Security Game

If b = 0:

else:

b'

Adaptive Hardcore Bit – Security Game

Claim : The AHB security game implies the former definition

Proof: Just trust me

Intuition: Observe

We know prove that any QPT adversary cannot have non-negligible advantage

in our security game.

Moderate Matrix Lemma

Given a close to uniform matrix C (fixed) and a vector Cs the following holds with

a very high probability:

The distributions are

statistically indistinguishable

Adaptive Hardcore Bit – Security Game

Thus, using the Moderate Matrix Lemma, we can directly say that the two distributions

and

are computationally indistinguishable.

Hardcore Bit 2

There exists a string d, such that for all Quantum poly-time adversaries ,

where,

Hardcore Bit 2 – Alternative Version

For all strings d, for any QPT adversary , the distributions

and

are computationally indistinguishable.

• The above definition implies the former one. (for any choice of string d)

• The distributions D0 and D1 above are computationally indistinguishable

using the Moderate Matrix Lemma.

Our Contributions

❑We simplified the proof of Hardcore-Bit properties by slightly tweaking the

Moderate Matrix Lemma.

❑We attempted to construct exact TCFs.

THANK
YOU

	Default Section
	Slide 1: Classical Verification of Quantum Computations (Part2: Function constructions)
	Slide 2: Main Results (Informal)
	Slide 3: Measurement Protocol
	Slide 4: Relation to this course
	Slide 5: Why should you study this?
	Slide 6: Trapdoor Claw-free functions
	Slide 7: Trapdoor Injective Functions
	Slide 8: Truncated Discrete Gaussian
	Slide 9: Trapdoors from Lattices
	Slide 10: Parameters
	Slide 11: Noisy-TCF Family
	Slide 12: Efficient Function Generation
	Slide 13: Trapdoor Injective Pair
	Slide 14: Efficient Range Superposition

	Untitled Section
	Slide 15: Efficient Range Superposition (Construction)
	Slide 16: Efficient Range Superposition (Sampling)
	Slide 17: TIF Family
	Slide 18: Efficient Function Generation
	Slide 19: Disjoint Trapdoor Injective Pair
	Slide 20: Efficient Range Superposition
	Slide 21: Injective Invariance
	Slide 22: Hardcore Bit Properties - Overview
	Slide 23: Adaptive Hardcore Bit
	Slide 24: Mapping
	Slide 25: Adaptive Hardcore Bit – Security Game
	Slide 26: Adaptive Hardcore Bit – Security Game
	Slide 27: Moderate Matrix Lemma
	Slide 28: Adaptive Hardcore Bit – Security Game
	Slide 29: Hardcore Bit 2
	Slide 30: Hardcore Bit 2 – Alternative Version
	Slide 31: Our Contributions
	Slide 32: Thank You

