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Main Results
(Informal)

LWE is hard for a BQP machine 

There exists an extended trapdoor claw-free family.

All decision problems in BQP can be verified by an 

efficient classical machine through interaction.



Measurement Protocol
Goal: Force the prover to behave as the verifier's trusted measurement device
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Relation to this 
course

ETCFs are built using LWE.

Extensively used in the construction of 

several verification protocols.

However, we only have approximate 

constructions.

We want to study these constructions and 

understand why we don’t have exact.



Why should you study this?

BQP 

Verification

[BCM+21], [BKVV20], 

[Mah23] etc.

Deniable 

Encryption

[CGV22]

QPKE with 

Certified 

Deletion

[HMNY21]



Trapdoor Claw-free functions

Hard to find a claw 

(𝑥0, 𝑥1) such that 

𝑓𝑘, 0 𝑥0 =  𝑓𝑘
, 1 𝑥1

without 𝑡𝑑.

Also satisfies two other 

adaptive hardcore bit 

properties.



Trapdoor Injective Functions

Given 𝑦 = 𝑔𝑘
, 𝑏(𝑥), hard to find 

(𝑏, 𝑥) without 𝑡𝑑.

ETCF=TCF+TIF+Injective Invariance

Hard to distinguish 

between (f0,f1) and (g0,g1)

Unfortunately, we don’t have 

exact constructions!



Truncated Discrete Gaussian 



Trapdoors from Lattices

Theorem [MP11]
 There is an efficient algorithm 

𝑨, 𝑡𝑑𝑨 ← GenTrap()

◦ Distribution of 𝑨 ≈ Uniform Distribution

◦ Efficient Inversion

(𝒔, 𝒆) ← Invert(𝑨, 𝑡𝑑𝑨, 𝑨𝒔 + 𝒆)

𝒆 ≤
𝑞

𝐶𝑇 𝑛 log q
= 2𝐵𝑃 𝑚

𝑞: Modulus, 𝑨 is of dimension 𝑚 x 𝑛



Parameters

𝑚 = Ω(𝑛 log 𝑞)

𝐵𝐿 < 𝐵𝑉 < 𝐵𝑃

𝐵𝑃 =
𝑞

2𝐶𝑇 𝑚𝑛 log q

𝐵𝑃

𝐵𝑉
,

𝐵𝑉

𝐵𝐿
 are super-polynomial



Noisy-TCF Family

◦ The range of the functions is a probability density 𝐷𝑌 over 𝑌

◦ The trapdoor injective pair property is defined in terms of support of the densities 

◦ claw: identical supports

◦ We require an QPT procedure which generates the state    

◦ Not possible!

◦ We will create an approximation of this using a related family



Efficient Function Generation

◦ 𝑘, 𝑡𝑑 ← Gen() ◦ 𝑨, 𝑡𝑑𝑨 ← GenTrap()

◦ 𝒔 ← ℤ𝑞
𝑛 𝒆 ←𝐷ℤ𝑞

𝑚, 𝐵𝑉
ℤ𝑞

𝑚

◦𝑘 = 𝑨, 𝑨𝒔 + 𝒆 , 𝑡𝑑 = 𝑡𝑑𝑨



The inversion works due to our choice of 𝐵𝑃

Perfect matching: 𝒙, 𝒙 − 𝒔 ∈ 𝑅𝑘

Trapdoor Injective Pair

◦ Trapdoor: For every 𝑦 ∈ Supp fk,b x

𝑥 ← Inv𝐹(k, td, b, y)

◦ Injective Pair: Perfect matching 𝑅𝑘



Efficient Range Superposition

◦ Inversion: For all 𝑥0, 𝑥1 ∈ 𝑅𝑘 and 𝑦 ∈ Supp(𝑓′𝑘,𝑏 𝑥𝑏 )

◦ Check: Chk𝐹(k, b, x, y) tells if 𝑦 ∈ Supp 𝑓𝑘,𝑏
′ (𝑥)

◦ Close to F:

◦ Efficient Sampling:

No longer have the perfect matching property!



Efficient Range Superposition (Construction)

Invert still works!
Check for which 𝑏’ this is true

𝑓𝑘,1 𝑥  and 𝑓′𝑘,1 𝑥  are Discrete 

Gaussians separated by 𝒆

Inversion
Check(k,b,x,y)

Close to F



EFFICIENT RANGE SUPERPOSITION (SAMPLING)

[Reg05]: This can 

be efficiently 

sampled



TIF FAMILY
𝑘 = (𝑨, 𝒖)



Efficient Function Generation

◦ 𝑘, 𝑡𝑑 ← Gen() ◦ 𝑨, 𝑡𝑑𝑨 ← GenTrap()

◦ 𝒖 ← ℤ𝑞
𝑚. If 

𝒔, 𝒆 ← Invert 𝑨, 𝑡𝑑𝑨, 𝒖  

such that 𝒖 = 𝑨𝒔 + 𝒆 and 

𝒆 ≤ 2𝐵𝑃 𝑚 then reject and 

resample.

◦ 𝑘 = 𝑨, 𝒖 , 𝑡𝑑 = 𝑡𝑑𝑨



Disjoint Trapdoor Injective Pair

◦ Trapdoor: For every 𝑦 ∈ Supp gk,b x

(𝑏, 𝑥) ← Inv𝐺(k, td, y)

◦ Disjoint Injective Pair: 

𝑏, 𝑥 ≠ 𝑏′, 𝑥′ ⇔

 Supp gk,b x ∩ Supp gk,b′ x′ = 𝜙



Efficient Range Superposition

◦ Check: Chk𝐺(k, b, x, y) tells if 𝑦 ∈

Supp 𝑔𝑘,𝑏 (𝑥)

◦ Efficient Sampling:

Use the same functions as in 

NTCF family.



◦ The functions Chk𝐹 , Samp𝐹 are the same as Chk𝐺 , Samp𝐺

◦ No QPT adversary can distinguish between the outputs of the generation 

algorithms of 𝐹 and 𝐺

Reduces to hardness of LWE!

Injective Invariance



Hardcore Bit Properties - Overview

Hard to find             such that
There exists a string d such that 

for all claws 

Adaptive Hardcore Bit Hardcore Bit 2

is the same bit and is hard to 

compute



Adaptive Hardcore Bit

For any QPT Adversary      ,

where,



Mapping 

• Defined to be the inner product of d and 

• Each entry of x belongs to      . So first convert it into binary.             



Adaptive Hardcore Bit – Security Game

If b = 0:

else:

b'



Adaptive Hardcore Bit – Security Game

Claim : The AHB security game implies the former definition                     

Proof: Just trust me 

Intuition: Observe 

We know prove that any QPT adversary cannot have non-negligible advantage 

in our security game.



Moderate Matrix Lemma

Given a close to uniform matrix C (fixed) and a vector Cs the following holds with 

a very high probability:

The distributions are 

statistically indistinguishable



Adaptive Hardcore Bit – Security Game

Thus, using the Moderate Matrix Lemma, we can directly say that the two distributions

and

are computationally indistinguishable. 



Hardcore Bit 2

There exists a string d, such that for all Quantum poly-time adversaries      ,

where,



Hardcore Bit 2 – Alternative Version

For all strings d, for any QPT adversary      , the distributions 

and

are computationally indistinguishable.

• The above definition implies the former one. (for any choice of string d)

• The distributions D0 and D1 above are computationally indistinguishable 

using the Moderate Matrix Lemma.



Our Contributions

❑We simplified the proof of Hardcore-Bit properties by slightly tweaking the 

Moderate Matrix Lemma.

❑We attempted to construct exact TCFs.



THANK 
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