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§0. Notation

For any n ∈N := {1, 2, . . .}, we define [n] to be the set {1, 2, . . . , n}.
For any distribution D over a set S, x ←D S denotes that x is sampled from S according to the distribution D.
Similarly for a set A, x ← A denotes that x is a random, uniformly distributed element from A.
The Pauli matrices are denoted using

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

The Hadamard operator is denoted as

H =
1√
2

(
1 1
1 −1

)

§1. Introduction

It has long been established that IP = PSPACE [Sha92] and that BQP ⊆ PSPACE [BV97], which implies BQP ∈ IP.
However, since the definition of IP allows the prover to be computationally unbounded, a natural question arises:
Can we achieve this with an efficient prover?
The main1 reference for this discussion is Urmila Mahadev’s groundbreaking paper on the Classical Verification
of Quantum Computation [Mah23]. This work demonstrated that an efficient classical prover (specifically, a BPP
machine) can verify the result of any efficient quantum computation (a BQP machine). This question was first posed
by Daniel Gottesman in 2004. Earlier attempts tackled two weaker formulations:

1. [BFK09][FK17][ABOE08][ABOEM17] If the verifier has an access to a small quantum computer, verification of
all efficient computations was possible.

2. [RUV12] An efficient classical verifier communicating with two entangled, non-communicating quantum
provers can verify the result of an arbitrary quantum computation.

In this report, we provide a comprehensive summary of the measurement protocol described in [Mah23], with a
particular focus on the construction of function families based on the Learning with Errors (LWE) problem. We
include detailed explanations of the constructions, clarifying aspects that we found unclear in the original paper to
enhance understanding.

§2. Overview

Caveat: In the overview, we build the measurement protocol by relying on idealized cryptographic primitives.
However, we do not know how to construct these idealized primitives. The rest of the report relies on approximate
versions.

2.1. Cryptographic Primitives

2.1.1. Trapdoor Claw-Free Function (TCF) Families

A trapdoor claw-free function family is a family of functions which are two-to-one and for which it is computation-
ally difficult to find a claw. In this paper, we take the function family as F = { fk,b : X → Y , b ∈ {0, 1}} where fk,0
and fk,1 are injective with the same range, and it is hard to find a claw fk,0(x0) = fk,1(x1). Further, we require two
hardcore bit properties from it:

1. No QPT adversary can simultaneously return an element x in the domain of f and an equation d such that
letting {x0, x1} be the two pre-images of fpk(x) under fpk it holds that d ̸= 0m and d · (x0 + x1) = 0.

1Additional references include [BCM+21] and [Vid20]
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2. There exists a d such that for all claws (x0, x1), d · (x0 ⊕ x1) = 0 and it is computationally hard to find.

Now we describe a BQP process of state commitment.

∣∣ψ〉 = α0 |0⟩+ α1 |1⟩
H⊗ log(|X |) |0⟩−−−−−−−→ 1√

|X | ∑
x∈X

(α0 |0⟩+ α1 |1⟩) |x⟩

C−O f−−−→ 1√
|X | ∑

x∈X
α0 |0⟩ |x⟩

∣∣ fk,0(x)
〉
+ α1 |1⟩ |x⟩

∣∣ fk,1(x)
〉

Measure third register−−−−−−−−−−−−→ α0 |0⟩
∣∣∣x0,y

〉
+ α1 |1⟩

∣∣∣x1,y

〉
, Measurement output y

Here x0,y and x1,y are the two preimages of y. Call the qubit containing b the committed qubit, the register con-
taining xb,y the preimage register and the string y as the commitment string. In the interactive setting, due to the
claw-free nature of the function, it is difficult for the prover to calculate both inverses x0,y and x1,y given only y.
However with access to the trapdoor td, the verifier can compute both of them.
An important property of the above committed state is that it allows a logical Hadamard measurement upto an X
Pauli:

α0 |0⟩
∣∣∣x0,y

〉
+ α1 |1⟩

∣∣∣x1,y

〉
H⊗ log(|X |)+1
−−−−−−−→ ∑

d∈X
((−1)d·x0,y α0 |+⟩+ (−1)d·x1,y α1 |−⟩) |d⟩

Measure preimage register−−−−−−−−−−−−−−→ α0 |+⟩+ (−1)d·(x0,y⊕x1,y)α1 |−⟩ = Xd·(x0,y⊕x1,y)H
∣∣ψ〉

Again, in the interactive setting, the prover measures the state obtained above an sends the measurement results
b′, d to the verifier. The verifier decodes the measurement b′ by xoring it with d · (x0 ⊕ x1) to obtain the bit m which
he stores as the output of the Hadamard basis measurement.

2.1.2. Trapdoor Injective Function (TIF) Families

A trapdoor injective function family G = {gk,b : X → Y} is a family of injective functions such that the range of gk,0
and gk,1 are disjoint. Given y = gk,b(xb,y), the trapdoor td allows the recovery of the (b, xb,y). We will also require
that G is computationally indistinguishable from F . We can think of the above commitment process in terms of
this family G as well, but when we measure the third register to obtain the commitment string, the superposition
collapses (since the ranges of gk,b are disjoint) and the final state is

|b⟩
∣∣∣xb,y

〉
where xb,y is the unique preimage of y.

2.2. Measurement Protocol
1. Basis selection:

The verifier selects a random string h ← {0, 1}n. Here hi = 0 corresponds to the Standard basis and hi = 1
corresponds to the Hadamard basis

2. Commitment Round:

(a) For i ∈ [n], if hi = 1, the verifier samples (ki, tdi) corresponding to the pair of TCF ( fki ,0, fki ,1) ∈ F .
Otherwise, he samples (ki, tdi) corresponding to the pair of TIF (gki ,0, gki ,1) ∈ G. He sends ki to the
prover.

(b) An honest prover generates n−qubits of his choice and commits to them as discussed above. He sends
the measurement results y1, y2, . . . , yn ∈ Y to the verifier.

3. Test/Hadamard Round:

The verifier now chooses to run a test or a Hadamard round.
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(a) Test: This round is used just for test purposes. The verifier requests a standard basis measurement of the
committed qubits and preimage registers for all n qubits. He receives b′i ∈ {0, 1} and x′i ∈ X from the
prover and checks if the measurement is a preimage of yi.

(b) Hadamard: This is the actual round where the measurement results are obtained. The verifier requests
a Hadamard basis measurement of the committed qubits and preimage registers for all n qubits. He
receives b′i ∈ {0, 1} and non-zero di ∈ X from the prover (rejects otherwise).

• For all i for which hi = 0, he ignores the measurement results bi and di. He uses the trapdoor to find
the preimage of yi and the bit b, and stores it as the Standard basis measurement result for the ith

qubit.
• For all i for which hi = 1, the verifier decodes b′i by xoring it with di · (x0,yi ⊕ x1,yi ). The verifier stores

the result mi = b′i ⊕ di · (x0,yi ⊕ x1,yi ) as the Hadamard basis measurement result for the ith qubit.

Completeness follows immediately from the properties of the functions discussed above. Soundness of the pro-
tocol is non-trivial and we refer the interested reader to the original paper for the same. We will now discuss the
approximate construction of the function families.

§3. Preliminaries

3.1. Hellinger Distance

Definition 3.1 (Hellinger Distance). The Hellinger distance between two probability distributions f1, f2 is given by

H2( f1, f2) = 1−∑
x

√
f1(x) f2(x) = 1− F( f1, f2)

where F is the Fidelity between f1, f2

2 Additionally, we have the following relation between the Hellinger distance and the Total Variation Distance:

Lemma 3.1.
H2( f1, f2) ≤

∥∥ f1 − f2
∥∥2

TV ≤ 2H2( f1, f2)

Proof.

∥∥ f1 − f2
∥∥

TV =
1
2 ∑

x
| f1(x)− f2(x)|

=
1
2 ∑

x

∣∣∣∣√ f1(x)−
√

f2(x)
∣∣∣∣ ∣∣∣∣√ f1(x) +

√
f2(x)

∣∣∣∣
(a)
≥ 1

2 ∑
x

∣∣∣∣√ f1(x)−
√

f2(x)
∣∣∣∣2

=
1
2 ∑

x
f1(x) + f2(x)− 2

√
f1(x) f2(x)

= ∑
x

1−
√

f1(x) f2(x)

2Trivia: Fieldity is also known as the Bhattacharya Coefficient
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Where (a) follows from the triangle inequality. For the other side:

∥∥ f1 − f2
∥∥2

TV =
1
4

(
∑
x

∣∣∣∣√ f1(x)−
√

f2(x)
∣∣∣∣ ∣∣∣∣√ f1(x) +

√
f2(x)

∣∣∣∣
)2

(b)
≤ 1

4

(
∑
x

∣∣∣∣√ f1(x)−
√

f2(x)
∣∣∣∣2
)(

∑
x

∣∣∣∣√ f1(x) +
√

f2(x)
∣∣∣∣2
)

≤ H2( f1, f2)

(
1 + ∑

x

√
f1(x) f2(x)

)
= H2( f1, f2)

(
2− H2( f1, f2)

)
= 2H2( f1, f2)

Where (b) follows from Cauchy-Schwarz. ■

3.2. Learning With Errors
For a positive real B and a positive integer q, the truncated Gaussian distribution over Zq with parameter B is the
distribution supported on D = {x ∈ Zq | ∥x∥ ≤ B}

DZq ,B(x) =
e
−π∥x∥2

B2

∑x∈D e
−π∥x∥2

B2

In higher dimensions Zm
q , for positive integer m and parameter B, supported on Dm = {x ∈ Zm

q | ∥x∥ ≤ B
√

m}

DZm
q ,B(x) = DZq ,B(x1)DZq ,B(x2) . . . DZq ,B(xm)

Observe that by the above definition, even the ∞−norm of the vectors in Dm should be bounded by B.

Lemma 3.2. Let B be a positive real and q, m positive integers. Consider e ∈ Dm. Then the Hellinger distance
between the distribution D = DZq ,B and the shifted distribution (D + e)(x) := D(x− e) satisfies

H2(D, D + e) ≤ 1− e
−2π
√

m∥e∥
B

From this, we also get a bound on the statistical distance since
∥∥ f1 − f2

∥∥
TV ≤

√
2H2( f1, f2). Thus

∥∥D− (D + e)
∥∥2

TV ≤ 2
(

1− e
−2π
√

m∥e∥
B

)
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Proof. Let τ = ∑x∈Dm e
−π∥x∥2

B2 . Then

∑
e0∈Dm

√
DZq ,B(e0)DZq ,B(e0 − e) = τ−m ∑

e0∈Dm
e
−π(∥e0∥2+∥e0−e∥2)

2B2

≥ τ−m ∑
e0∈Dm

e
−π(∥e0∥2+(∥e0∥+∥e∥)2)

2B2

= τ−m ∑
e0∈Dm

e
−π∥e0∥2

B2 e
−π∥e∥2

2B2 e
−π∥e0∥∥e∥

B2

(a)
≥ e

−π∥e∥2
2B2 − π

√
m∥e∥
B τ−m ∑

e0∈Dm
e
−π∥e0∥2

B2

= e−
π(∥e∥2+2B

√
m∥e∥)

2B2

(b)
≥ e

−3π∥e∥2
2B2 ≥ e

−2π∥e∥2
B2

■

Where (a), (b) follow from ∥e0∥ , ∥e∥ ≤ B
√

m respectively.

Definition 3.2 (Learning With Errors). For a security parameter λ, let n, m, q ∈ N be integer functions of λ. Let
χ = χ(λ) be a distribution over Z. The LWEn,m,q,χ problem is to distinguish between the distributions

(A, As + e mod q) and (A, u)

where A← Zn×m
q , s← Zn

q , e← χm, u← Zm. Denote LWEn,q,χ as the LWE problem when m = poly(n log q).

Definition 3.3 (LWE assumption). No quantum polynomial time procedure can solve the LWEn,q,χ problem with
more than a negligible advantage, even when given access to an advice state dependent on the parameters of the
problem.

It was shown in [Reg24] and [PRSD17] that for any α > 0 such that σ = αq ≥ 2
√

n the LWEn,q,DZq ,σ problem is

at least as hard as approximating the SIVP to within a factor of Õ(n/α) in worst case dimension n lattices. The
best known classical or quantum algorithm for these problems runs in 2Õ(n/ log γ). For our construction, we assume
hardness of the problem against a QPT adversary in the case γ is a super-polynomial function in n.
We require the following result, which tells us that trapdoor functions can be built from LWE.

Theorem 3.3 (Theorem 5.1 in [MP11]). Let n, m ≥ 1 and q ≥ 2 be such that m = Ω(n log q). There is an efficient
algorithm (A, tA)← GENTRAP(1n, 1m, q) such that:

• The distribution of A is negligibly (in n) close to the uniform distribution.

• There is an efficient inversion algorithm (s, e) ← INVERT(A, tA, As + e) where ∥e∥ ≤ q/(CT
√

n log q), CT is
a universal constant.
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Additionally, we will require another property which is the existence of a "lossy mode" for LWE.

Definition 3.4 (Definition 3.1 in [AKPW13]). Let χ = χ(λ) be an efficiently sample-able distribution over Zq. Define
a lossy sampler Ã← LOSSY(1n, 1m, 1λ, q, χ) by Ã = BC + F, where B← Zm×l

q , C← Zl×n
q , F← χm×n.

Theorem 3.4 (Lemma 3.2 in [AKPW13]). Under the LWEl,q,χ assumption, the distribution of a random Ã ←
LOSSY(1n, 1m, 1λ, q, χ) is computationally indistinguishable from A← Zm×n

q .

3.3. Moderate Matrices

Definition 3.5 (Moderate Matrices). Let b ∈ Zn
q . We say that b is moderate if it contains at least n/4 entries whose

unique representative in (−q/2, q/2] has its absolute value in the range (q/8, 3q/8]. A matrix C ∈ Zl×n
q is moderate

if its entire row span except 0n is moderate.

3.4. The Pauli Twirl
The conjugation of a CPTP map by a random Pauli is called a Pauli twirl.

Lemma 3.5 (Z Pauli Twirl). For a CPTP map with Kraus operators {Bτ}τ , the following CPTP maps are equal:{
1√
2
(Zr ⊗ I)Br(Zr ⊗ I)

}
r∈{0,1},τ

=
{
(Xx ⊗ I)B′x,τ

}
x∈{0,1},τ

where Bτ = ∑x,z∈{0,1} XxZz ⊗ Bxzτ and B′x,τ = ∑z∈{0,1} Zz ⊗ Bxzτ .

Corollary 3.6 (Z Pauli Twirl with Measurement). For a CPTP map with Kraus operators {Bτ}τ , the following two
CPTP maps are equal:{

1√
2
(|b⟩⟨b|HZr ⊗ I)Br(Zr ⊗ I)

}
r∈{0,1},τ

=
{
(|b⟩⟨b|H ⊗ I)B′x,τ

}
x∈{0,1},τ

where Bτ = ∑x,z∈{0,1} XxZz ⊗ Bxzτ and B′x,τ = ∑z∈{0,1} Zz ⊗ Bxzτ .

3.5. QPIP Definition



Classical Verification of Quantum Computation 9 / 25

Definition 3.6. A language L is said to have a Quantum Prover Interactive Proof (QPIPτ) with completeness c
and soundness s, (with c − s at least a constant) if there exists a pair of algorithms (calP,V) with the following
properties:

• P is a BQP machine, which also has a quantum channel that can transmit τ qubits.

• V is a hybrid quantum classical machine.

– The classical part is a BPP machine.

– The quantum part is a register of τ qubits on which the verifier can perform arbitrary quantum operations
and which has access to a quantum channel that can transmit τ qubits.

The interaction between the quantum and classical parts of V is the usual one: the classical part controls which
operations are to be performed on the quantum register, and outcomes of measurements of the quantum
register can be used as input to the classical machine.

• There is also a classical communication channel between P and V , that can transmit polynomially many bits
at any step.

• At any given step, either V or P perform computations on their registers and send bits and qubits through the
relevant channels to the other party.

We require:

Completeness: x ∈ L =⇒ there exists a P such that after interacting with it, V accepts with probability ≥ c.

Soundness: x /∈ L =⇒ for all P , the interaction between P ,V leads V to accept with probability ≤ s.

§4. The Fitzsimons-Morimae Protocol

In this section, we describe the receive-and-measure protocol from [FK17], as it will form the base for Mahadev’s
protocol. This part is mostly based on Lecture 5 of notes by Thomas Vidick [Vid20].

4.1. The Feynman-Kitaev Clock
Recall that in the proof of the Cook-Levin Theorem, we reduce the circuit to a boolean formula. The computation
performed by the circuit on some input is represented as a “tableau” such that the property of being a valid tableau
can be encoded into a Boolean formula. For quantum circuits, the idea of a tableau of the computation is replaced
by a special register called the “clock” to keep a track of the history:

∣∣ψh
〉
=

1√
T + 1

T

∑
t=0
|t⟩
∣∣ψt
〉

It is possible to create such a state with a circuit that is mildly more complex than the original circuit C. Kitaev
showed that, assuming the clock register is encoded in unary, it is possible to check the correct propagation of every
step of the circuit directly on this superposition by only applying local observables: there is a set of observables Hin
and an observable Hout that checks the output qubit of the circuit in its right state. Further, there is an observable
Hclock that check that the clock register is well-formed. The final result is the following theorem, which reduces
quantum circuit satisfiablity to the Local Hamiltonian problem, showing that LH is QMA complete:

Theorem 4.1 (Local Hamiltonian is QMA Complete). For any integer n ≥ 1 there are n′ = poly(n), α = α(n) and
δ ≥ 1/ poly(n) such that given a T = poly(n) gate quantum circuit C = ((Gk, ik, jk)k∈[T]) acting on n qubits, and an
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input x, there exists efficiently computable real weights {Jij|i, j ∈ [n′]} such that ∀i, j : |Jij| ≤ 1 and if

HC = −∑
ij

Jij

2
(XiXj + ZiZj)

then:

Completeness: If the C accepts x with probability ≥ 2/3 then the smallest eigenvalue of HC is at most α.

Soundness: If the C accepts x with probability ≤ 1/3 then the smallest eigenvalue of HC is at least α + δ.

This theorem gives us the recipe for the verification of quantum circuits: it is sufficient to verify the existence of a
quantum state that yields certain statistics (i.e. low ground state energy) when some of its qubits are measured in
the X or Z basis. This therefore extends to a protocol in which the Prover P is fully quantum but the Verifier V has
a one-qubit memory with the ability to measure using either X or Z observables.

4.2. The Protocol

Fitzsimons-Hadjuček-Morimae Protocol

Let C be the input circuit and HC be the n-qubit Hamiltonian of Theorem 4.1.

1. V initializes a counter γ = 0. They execute the following interaction with P independently N = C
δ2 (

n′
2 )

2
ln
(

1
ϵ

)
for sufficiently large universal constant C.

(a) P prepares the ground state
∣∣ψ〉 of HC and sends it to V qubit-by-qubit.

(b) V selects measurement W ← {X, Z} and measures each qubit in associated basis upon reception. Let
bWi ∈ {1,−1} be the outcome for the ith qubit. Next they select i ̸= j ∈ [n′] uniformly at random and
update their counter γ← γ− JijbWibWj.

2. V accepts iff γ
N (n′

2 ) ≤ a + δ/2.

Figure 1: Fitzsimons-Hadjuček-Morimae Protocol, paramterized by circuit C and error ϵ

Theorem 4.2. Let C be a quantum circuit and HC be the Hamiltonian associated to it. Let x be an input to C and
ϵ > 0 a parameter for the protocol. Then the following hold:

Completeness: If the C accepts x with probability ≥ 2/3 then there exists a QPT prover that is accepted with
probability at least 1− ϵ.

Soundness: If the C accepts x with probability ≤ 1/3 then for all provers, the acceptance probability is at most ϵ.

Proof. Let Γ be the random variable denoting the value of γ at the end of the protocol. Then we can decompose it
as:

Γ = Γ1 + Γ2 + · · ·+ ΓN

where each Γk = −JijbWibWj for that iteration. Then, by the linearity of expectation:

E[Γ] = − N

(n′
2 )

∑
i ̸=j

Jij

2
〈
ψ
∣∣XiXj + ZiZj

∣∣ψ〉 = N

(n′
2 )

〈
ψ
∣∣HC

∣∣ψ〉
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Therefore, E[Γ]
N (n′

2 ) is the ground state energy, that by Theorem 4.1 will be ≥ α or ≤ α + δ depending on x. What
remains to show is that the actual value of γ will be close to E[Γ] with a high probability. Since all the trials are
independent, this can be easily done using a Hoeffding’s bound. This also gives the expression for N in terms of ϵ.

■

§5. Function Definitions

Unfortunately, we don’t have exact constructions of the primitives discussed in the introduction. So, we will build
approximate function families using Learning With Errors. The major changes from the original definition are:

• The range of the functions is a probability density DY over Y instead of being Y . Each function returns a
density rather than a point.

• The trapdoor injective pair property , i.e. the pair ( f0, f1), is defined in terms of support of the densities: their
supports should be identical in the case of a colliding pair (claw), and disjoint otherwise.

• We require an QPT procedure which generates the state

1
|X | ∑

x∈X ,y∈Y

√
( fk,b(x))(y) |x⟩

∣∣y〉
Unfortunately, it is not possible to build this perfectly using the current construction. Nevertheless, we can
create an approximation of this using a related family f ′k,b. This is however not needed in the construction of
the TIF family, the above state can be exactly generated.

• The adaptive hardcore bit property is modified too using an injective map J : X → {0, 1}w which basically
maps an integer to its binary representation.

5.1. NTCF Family

Definition 5.1 (Noisy Trapdoor Claw-free Function family). Let λ be the security parameter, X ,Y ,KF be finite sets.
A family of functions

F = { fk,b : X → DY}k∈KF ,b∈{0,1}

is called a NTCF family if the following hold:

1. Efficient Function Generation: There exists a PPT algorithm which generates the key and the trapdoor

(k, td)← GEN(1λ)

2. Trapdoor injective pair:

(a) Trapdoor: There exists an efficient deterministic inversion algorithm such that for y ∈ SUPP( fk,b(x))

x ← INV(k, td, b, y)

This also implies that for x ̸= x′, SUPP( fk,b(x)) ∩ SUPP( fk,b(x′)) = ϕ

(b) Injective Pair: There is a perfect matchingRk ⊆ X ×X such that

fk,0(x0) = fk,1(x1)⇔ (x0, x1) ∈ Rk

3. Efficient Range Superposition: For all k ∈ KF , b ∈ {0, 1}, there exists a function f ′k,b : X → DY such that:
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(a) Inversion: For all (x0, x1) ∈ Rk, y ∈ SUPP( f ′k,b(xb))

xb ← INVF (td, b, y) xb⊕1 ← INVF (td, b⊕ 1, y)

(b) Check: There exists an efficient deterministic procedure b′ ← CHKF (k, b, x, y) where b′ = 1 iff y ∈
SUPP( f ′k,b(x)). Observe that CHKF doesn’t get the trapdoor.

(c) Close to F : For every k, b
E

x←X
[H2( fk,b(x), f ′k,b(x)] ≤ negl(λ)

(d) Efficient Sampling: There exists an efficient sampling procedure SAMPF that prepares the state

1√
|X | ∑

x∈X ,y∈Y

√
f ′k,b(x) |x⟩

∣∣y〉← SAMPF (k, b)

4. Adaptive Hardcore Bit: For all keys KF , the following conditions hold for w = poly(λ)

(a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x such that

Pr
d←{0,1}w

[d /∈ Gk,b,x] ≤ negl(λ)

Moreover there exists an efficient algorithm which checks for membership in Gk,b,x given k, b, x, td.

(b) There is an efficiently computable injection J : X → {0, 1}w, such that J can be inverted efficiently on its
range and if

Hk = {(b, xb, d, d · J(x0)⊕ J(x1))|b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩ Gk,1,x1}
H̄k = {(b, xb, d, c)|(b, x, d, c⊕ 1) ∈ Hk}

then for any QPT adversary A∣∣∣∣∣ Pr
(k,td)←GENF (1λ)

[A(k) ∈ Hk]− Pr
(k,td)←GENF (1λ)

[A(k) ∈ H̄k]

∣∣∣∣∣ ≤ negl(λ)

5.2. TIF Family

Definition 5.2 (Trapdoor Injective Function Family). Let λ be the security parameter, X ,Y ,KG be finite sets. A
family of functions

G = {gk,b : X → DY}k∈KG ,b∈{0,1}

is called a TIF family if the following hold:

1. Efficient Function Generation: There exists a PPT algorithm which generates the key and the trapdoor

(k, td)← GENG(1λ)

2. Disjoint Trapdoor injective pair:

(a) Trapdoor: There exists an efficient deterministic inversion algorithm such that for y ∈ SUPP(gk,b(x))

(b, x)← INVG(td, y)
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(b) Disjoint Injective Pair: For all k ∈ KG , b, b′ ∈ {0, 1}, x, x′ ∈ X , if (b, x) ̸= (b′, x′),

SUPP(gk,b(x)) ∩ SUPP(gk,b(x′)) = ϕ

3. Efficient Range Superposition: For all k ∈ KG , b ∈ {0, 1}

(a) Check: There exists an efficient deterministic procedure b′ ← CHKG(k, b, x, y) where b′ = 1 iff y ∈
SUPP(gk,b(x)). Observe that CHKG doesn’t get the trapdoor.

(b) Efficient Sampling: There exists an efficient sampling procedure SAMPG that prepares the state

1√
|X | ∑

x∈X ,y∈Y

√
gk,b(x) |x⟩

∣∣y〉← SAMPG(k, b)

5.3. ETCF Family
Now we extend the definition of NTCF family to create the Extended Trapdoor Claw-free function family.

Definition 5.3 (Injective Invariance). A NTCF family F is injective invariant if there exists a trapdoor injective
family G such that:

1. The algorithms CHKF and SAMPF are the same as the algorithms CHKG and SAMPG .

2. For all QPT adversaries A,∣∣∣∣∣ Pr
(k,td)←GENF (1λ)

[A(k) ∈ Hk]− Pr
(k,td)←GENG (1λ)

[A(k) ∈ H̄k]

∣∣∣∣∣ ≤ negl(λ)

Definition 5.4 (Extended Trapdoor Claw-Free Family). A NTCF family F is an ETCF if:

1. It is injective invariant.

2. Hardcore Bit 2: For all k ∈ KF , d ∈ {0, 1}w let

H′k,d = {d · (J(x0)⊕ J(x1))|(x0, x1) ∈ Rk}

There exists a string d ∈ {0, 1}w such that for all QPT A∣∣∣∣∣ Pr
(k,td)←GENF (1λ)

[A(k) ∈ H′k,d]−
1
2

∣∣∣∣∣ ≤ negl(λ)

Informally,

ETCF = NTCF + HB2 + TIF + Injective Invariance
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§6. Construction from LWE

6.1. NTCF+HB2

Let λ be the security parameter. Let q ≥ 2 be a prime, l, n, m, w ≥ 1 be polynomially-bounded functions of λ, and
BL, BV , BP be positive integers. We use the following constraints on the parameters:

(A1) n = Ω(l log q + λ)

(A2) m = Ω(n log q)

(A3) w = n⌈log q⌉

(A4) BP = q
2CT
√

mn log q
, where CT is the universal constant in Theorem 3.3

(A5) 2
√

n ≤ BL < BV < BP

(A6) The ratios BP
BV

, BV
BL

are both super-polynomial in λ.

Let X = Zn
q and Y = Zm

q . The key space KF is a subset of Zm×n
q × Zm

q . We define the density function for a
b ∈ {0, 1}, x ∈ X and key k = (A, As + e) as:

∀y ∈ Y , ( fk,b(x))(y) = DZm
q ,BP(y−Ax− bAs)

We now prove the following theorem:

Theorem 6.1. For any choice of parameters satisfying conditions 6.1, the function family FLWE is an extended
trapdoor claw-free function family under the hardness assumption LWEl,q,DZq ,BL

Proof. We verify each of the properties of an ETCF as follows:

1. Efficient Function Generation: GENF is defined as follows:

• Sample (A, tA)← GENTRAP(1n, 1m, q), where GENTRAP is as defined in Theorem 3.3.

• Sample s← {0, 1}n, and a vector e←DZm
q ,BV

Zm
q .

• Return k = (A, As + e) and td = tA.

2. Trapdoor Injective Pair:

(a) Trapdoor: Observe that, for any key k = (A, As + e) and for all x ∈ X ,

SUPP( fk,0(x)) =
{

Ax + e0| ∥e0∥ ≤ Bp
√

m
}

SUPP( fk,1(x)) =
{

A(x + s) + e0| ∥e0∥ ≤ Bp
√

m
}

Given k = (A, As + e), td, b, y, the INV algorithm uses (x + bs, e0) ← INVERT(A, td, y) and using b,
returns x. Our choice of BV ensures that the INVERT algorithm of the trapdoor works correctly. Note
that we also require s to recover x, which can be found by inverting the second component of the key.
The condition on the supports follows from the correctness of the inversion algorithm of the trapdoor
function.

(b) Injective Pair: As seen above, the matching is given by (x, x− s) because for both the supports to overlap,
x0 = x1 + s.
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3. Efficient Range Superposition: Define

( f ′k,b(x))(y) = DZm
q ,BV (y−Ax− b(As + e))

(a) Inversion: Observe that

SUPP( f ′k,0(x)) =
{

Ax + e0| ∥e0∥ ≤ Bp
√

m
}

SUPP( f ′k,1(x)) =
{

A(x + s) + e0 + e| ∥e0∥ ≤ Bp
√

m
}

We no longer have the perfect matching property as above, but the inversion procedure still works cor-
rectly. For b = 0, there is no change. For b = 1,

∥e0 + e∥ ≤ (BP + BV)
√

m ≤ 2BP
√

m

which still satisfies the condition in Theorem 3.3.

(b) Check: Given k = (A, As + e), b, x, y, the CHKF procedure simply finds the bit b′ for which∥∥∥y−Ax− b′(As + e)
∥∥∥ ≤ BP

√
m

and returns 1 iff b = b′.

(c) Close to F : For b = 0, the functions are identical. For b = 1 they are Gaussians shifted by e, and by
Lemma 3.2, the distance between them is negligible by our choice constraints in Section 6.1:

H2( fk,1(x), f ′k,1(x)) ≤ 1− e
−2πmBV

BP ≤ 2πmBV
BP

(d) Efficient Sampling: From [Reg24] Lemma 3.12, we use the result that the following state can be efficiently
prepared: ∣∣ψ0

〉
= ∑

e0∈Zm
q

√
DZm

q ,BP(e0) |e0⟩

We obtain the required state by these transformations:

∣∣ψ0
〉 Add an auxiliary registers−−−−−−−−−−−−−−→ ∑

e0∈Zm
q

√
DZm

q ,BP(e0) |e0⟩ |0⟩ |0⟩

Compute uniform superposition over second register−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1√
qn ∑

x∈Zn
q e0∈Zm

q

√
DZm

q ,BP(e0) |e0⟩ |x⟩ |0⟩

Compute third register−−−−−−−−−−−−→ 1√
qn ∑

x∈Zn
q e0∈Zm

q

√
DZm

q ,BP(e0) |e0⟩ |x⟩
∣∣e0 −Ax− b(As + e)

〉
Uncompute and discard first register−−−−−−−−−−−−−−−−−−−−→ 1√

qn ∑
x∈Zn

q e0∈Zm
q

√
DZm

q ,BP(e0) |x⟩
∣∣e0 + Ax + b(As + e)

〉
=

1√
qn ∑

x∈Zn
q ,y∈Zm

q

√
DZm

q ,BP(y−Ax− b(As + e)) |x⟩ |y⟩ = 1√
qn ∑

x∈Zn
q ,y∈Zm

q

√
( f ′k,b(x))(y) |x⟩ |y⟩

Which is the required superposition.

4. Adaptive Hardcore Bit 1:

(a) Let J : X n → {0, 1}w be the binary representation of x ∈ X . Define Ib,x(d) ∈ {0, 1}n to be the vector
whose each coordinate is obtained by taking the inner product mod 2 of the corresponding block of
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⌈log q⌉ coordinates of d and of J(x)⊕ J(x− (−1)b1) where 1 is the vector with all entries equal to 1. For
k = (A, As + e) and x ∈ X , we define the set

Gk,0,x :=

{
d ∈ {0, 1}w

∣∣∣∣∃i ∈
{

0, . . . ,
n
2

}
: (Ib,x(d))i = 1

}

Gk,1,x :=

{
d ∈ {0, 1}w

∣∣∣∣∃i ∈
{

n
2

, . . . , n
}

: (Ib,x(d))i = 1

}
Observation 1: For all b, x, if d is sampled uniformly at random, d /∈ Gk,b,x with negligible probability.
This is because J is injective, implying that each of the n components of J(x)⊕ J(x− (−1)b1) is not zero.
Since d is sampled uniformly at random, the probability that the inner product mod 2 of each component
of length ⌈log q⌉ is zero is 1

2 as exactly half of the bitstrings will be orthogonal to this bitstring, giving a
total probability of 2−n which is negligible.
Observation 2: Checking membership in Gk,b,x can be done efficiently using just b, x.

(b) Given (x0, x1) ∈ Rk, we know that x1 = x0 − s. We split s = (s0, s1) into two equal halves. Also,
introduce the following set, where y = fk,0(x0) = fk,1(x1)

Ĝs1,0,x0 = Ĝs0,1,x1 = Gk,0,x0 ∩ Gk,1,x1

Lemma 6.2. Assume a choice of parameters satisfying conditions 6.1 and the hardness of LWEl,q,DZq ,BL .
Let s ∈ {0, 1}n and

Hs = {(b, x, d, d · (J(x)⊕ J(x− (−1)bs)))|b ∈ {0, 1}, x ∈ X , d ∈ Ĝs⊕1,b,x}
H̄s = {(b, x, d, c⊕ 1)|(b, x, d, c) ∈ Hs}

Then for any QPT procedure

A : Zm×n
q ×Zm

q → {0, 1} × X × {0, 1}w × {0, 1}∣∣∣∣∣ Pr
(k,td)←GEN(1λ)

[A(k) ∈ Hs]− Pr
(k,td)←GEN(1λ)

[A(k) ∈ H̄s]

∣∣∣∣∣ ≤ negl(λ)

3 We prove this in 3 steps. First consider the following lemma:

Lemma 6.3. Assume a choice of parameters satisfying conditions 6.1 and the hardness of LWEl,q,DZq ,BL .
Let

A : Zm×n
q × Zm

q → {0, 1} × X × {0, 1}w × {0, 1}

be a quantum poly-time procedure. Then the distributions

D0 =
(
(A, As + e)← GENF (1λ), (b, x, d, c)← A(A, As + e), Ib,x(d) · s mod 2

)
and

D1 =
(
(A, As + e)← GENF (1λ), (b, x, d, c)← A(A, As + e), (δd∈Ĝsb⊕1,b,x

r)⊕ Ib,x(d) · s mod 2
)

where r ← {0, 1} and δd∈Ĝsb⊕1,b,x
is 1 if d ∈ Ĝsb⊕1,b,x and 0 otherwise, are computationally indistinguish-

able.

3Note that this lemma is equivalent to condition (b) of 4. This is because, for our construction, any (x0, x1) ∈ Rk satisfy the relation x0 = x1 + s
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To prove Lemma 6.2, we will first show that Lemma 6.3 implies 6.2. The proof for this statement can be
found in the appendix (Proof A.1).
It is thus sufficient to give a proof for 6.3. Before jumping into the proof, first consider the following
lemma that would be useful in the proof.

Lemma 6.4 (Moderate Matrix Lemma). Let q be a prime, l, n ≥ 1 integers and C ∈ Zl×n
q a uniformly

random matrix. With probability at least 1− ql · 2− n
8 over the choice of C, the following holds: For a

fixed C, all v ∈ Zl
q and d̂ ∈ {0, 1}n\{0n}, the distribution of (d̂ · s mod 2), where s is uniform in {0, 1}n

conditioned on Cs = v is within statistical distance O(q
3l
2 · 2− n

40 ) of the uniform distribution over {0, 1}.

Proof. The proof for this lemma can be found in the appendix. ■

We now prove our lemma 6.3 through a sequence of hybrid distributions. Let

HD(1) =
(
(Ã, Ãs + e)← GENF (1λ), (b, x, d, c)← A(Ã, Ãs + e), Ib,x(d) · s mod 2

)
,

where Ã = BC + F ← LOSSY(1n, 1m, 1l , q, DZq ,BL) is sampled from a lossy sampler. From Theorems
3.3 and 3.4, we know that both A (generated by GENTRAP) and Ã are negligibly far from the uniform
distribution. Hence, we can say that D0 ≈c HD(1).
Next we remove the term Fs from the lossy LWE sample Ãs + e to obtain the distribution,

HD(2) =
(
(BC + F, BCs + e)← GENF (1λ), (b, x, d, c)← A(BC + F, BCs + e), Ib,x(d) · s mod 2

)
.

Observe that ||Fs|| ≤ n
√

mBL
4. Applying Lemma 3.2, the statistical distance between HD(1) and HD(2)

is at most

γ =
√

2
(

1− e
−2πmnBL

BV

)1/2
,

which is negligible due to the condition (A6) in 6.1. Next observe that the distribution HD(2) depends
on s only through the terms BCs and Ib,x(d) · s. Since B, C are uniformly random matrices, it follows
from Lemma 6.4 that the distribution of Ib,x(d) · s mod 2 is statistically indistinguishable (Provided that
n = Ω(l log q + λ), which is satisfied by condition (A1) in 6.1) from r ← {0, 1} as long as not all bits of
Ib,x(d) are 0. Hence, the distribution HD(2) is statistically indistinguishable from

HD(3) =
(
(BC+F, BCs+ e)← GENF (1λ), (b, x, d, c)← A(BC+F, BCs+ e), (δd∈Ĝsb⊕1,b,x

r)⊕ Ib,x(d) · s mod 2
)

,

where r ← {0, 1}. Next, we reintroduce the Fs term to obtain

HD(4) =
(
(Ã, Ãs + e)← GENF (1λ), (b, x, d, c)← A(Ã, Ãs + e), (δd∈Ĝsb⊕1,b,x

r)⊕ Ib,x(d) · s mod 2
)

.

Statistical indistinguishability between HD(3) and HD(4) follows similarly as between HD(1) and HD(2).
Finally, computational indistinguishability between HD(4) and D1 follows similarly as between D0 and
HD(1). Thus, we obtain

D0 ≈c HD(1) ≈ HD(2) ≈ HD(3) ≈ HD(4) ≈c D1

=⇒ D0 ≈c D1

5. Hardcore bit 2: The proof for Hardcore Bit 2 property follows in a similar manner as AHB. To show that our
construction satisfies the HB2 property, we prove the following lemma.

4This is because s is a binary vector and the entries of F are sampled from a BL-bounded distribution
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Lemma 6.5. Assume a choice of parameters satisfying the conditions 6.1. Assume the hardness assumption
LWEl,q,DZq ,BL

holds. Let s ∈ {0, 1}n and for d ∈ {0, 1}w 5 let

H′s,d = {d · (J(x)⊕ j(x− s)|x ∈ X}.

Then for all d̂ ∈ {0, 1}n\{0n} and for any quantum polynomial-time procedure

A : Zm×n
q ×Zn

q → {0, 1}

there exists a negligible function µ(.) such that∣∣∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) ∈ H′s,J(d̂)]−
1
2

∣∣∣∣∣ ≤ µ(1λ).

To prove this lemma, First consider a variant of this lemma (Lemma 6.6) which we prove here. We later claim
that the following Lemma 6.6 implies Lemma 6.5.

Lemma 6.6. Assume a choice of parameters satisfying conditions 6.1. Under the hardness assumption
LWEl,q,DZq ,BL

, for all d̂ ∈ {0, 1}n\{0n}, the distributions

D0 =
(
(A, As + e)← GENF (1λ), d̂ · s mod 2

)
D1 =

(
(A, As + e)← GENF (1λ), r

)
,

where r ← {0, 1}, are computationally indistinguishable.

Proof. The proof of this lemma is very similar to the proof of Lemma 6.3. We present a series of Hybrid dis-
tributions to show that the above two distributions D0 and D1 are computationally indistinguishable, where
each of the indistinguishability argument follows in the same way as in the proof of Lemma 6.3

D0 =
(
(A, As + e)← GENF (1λ), d̂ · s mod 2

)
≈ HD(1) =

(
(Ã, Ãs + e)← GENF (1λ), d̂ · s mod 2

)
≈ HD(2) =

(
(BC + F, BCs + e)← GENF (1λ), d̂ · s mod 2

)
≈ HD(3) =

(
(BC + F, BCs + e)← GENF (1λ), r

)
≈ HD(4) =

(
(Ã, Ãs + e)← GENF (1λ), r

)
≈ D1 =

(
(A, As + e)← GENF (1λ), r

)
■

Claim 6.7. Lemma 6.6 implies Lemma 6.5.

Proof. The proof is similar to the proof A.1 and can be found in Appendix (Proof A.2) ■
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Hence by Claim 6.7 and Lemma 6.6 we can conclude that our construction satisfies the HB2 property.

■

6.2. TIF

We will show that for key k = (A, u)

(gk,b(x))(y) = DZm
q ,BP(y−Ax− bu)

satisfies the definition of trapdoor injective function given above.

1. Efficient Function Generation: This is similar to that for TCF family, but we modify the way we obtain the
second component of the key.

• Sample (A, tA)← GENTRAP(1n, 1m, q), where GENTRAP is as defined in Theorem 3.3.

• Sample s← {0, 1}n, and a vector e←DZm
q ,BV

Zm
q ⋆ Sample u ← Zm

q . Now using the trapdoor apply

(s, e) ← Invert(A, tA, u) and check if As + e = u and ∥e∥ ≤ 2BP
√

m (This tells us that the inversion
procedure ran correctly). If so, then discard u and repeat again.

• Return k = (A, u) and td = tA.

Due to the setting of parameters, the rejection in the modified procedure happens with negligible probability,
and hence the distribution is close to uniform. This also causes the inversion procedure of the trapdoor
function to not work correctly on u since there do not exist s, e with ∥e∥ ≤ 2BP

√
m such that u = As + e.

Observe that this puts a constraint on the norm of u, namely, ∥u∥ ≥ 2Bp
√

m, as otherwise we can set s = 0
and e = u. This is required for the INVGLWE function described below.

2. Disjoint Trapdoor Injective Pair:

(a) Trapdoor: Observe that

SUPP(gk,0(x)) =
{

Ax + e0| ∥e0∥ ≤ Bp
√

m
}

SUPP(gk,1(x)) =
{

Ax + e0 + u| ∥e0∥ ≤ Bp
√

m
}

The procedure INVGLWE takes as input (tA, y) where y ∈ Y and runs the algorithm INVERT on y.

• If it outputs (s0, e0) such that y = As0 + e0 and ∥e0∥ ≤ BP
√

m then return (0, s0).
• Otherwise, run the algorithm on y− u to obtain (s0, e0) and output (1, s1)

(b) Disjoint Injective Pair: We have three cases here:

• For x ̸= x′, SUPP(gk,b(x)) ∩ SUPP(gk,b(x′)) = ϕ due to the correctness of the INVERT function of the
trapdoor function.

• SUPP(gk,0(x)) ∩ SUPP(gk,1(x)) = ϕ due to the discussion about the length of u in the generation
algorithm (see above). Also refer to Fig. 2 for a graphical visualization.

• For x ̸= x′, SUPP(gk,0(x)) ∩ SUPP(gk,1(x′)) = ϕ because of similar reasons as above.

3. Efficient Range Superposition: Use the same functions CHKFLWE and SAMPFLWE as in the TCF family.

6.3. Injective Invariance
To show that FLWE is injective invariant with respect to GLWE, we just need to show that for all QPT attackers A,
the distributions produced by GENFLWE and GENGLWE are computationally indistinguishable. This turns out to be
equivalent to the hardness of LWE! This is because u is almost uniformly random as noted in the above construction.
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Figure 2: The length of u causes both the supports to be disjoint

Lemma 6.8. Assuming the choice of parameters (A1)-(A6) and hardness of LWEl,q,DZq ,BL , the distributions

D0 = {(A, As + e)← GENFLWE (1
λ)}

D1 = {(A, u)← GENGLWE (1
λ)}

are computationally indistinguishable.
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§7. Questions and Open problems

7.1. What are some other applications of TCFs?
• [CGV22] This paper explores deniable encryption in the context of quantum computing, aiming to create

cryptographic systems where a user can plausibly deny the contents of their encrypted messages, even in the
presence of quantum adversaries. Deniable encryption allows a sender to produce alternative "fake" plaintexts
in case they are forced to reveal the encryption. The authors extend classical deniable encryption schemes to
account for quantum threats, focusing on settings where both the sender and the receiver can manipulate
information in a quantum way.

• [HMNY21] This paper addresses quantum public key encryption (QPKE) with a feature known as certified
deletion, where a receiver can prove that they have deleted an encrypted message irreversibly. Certified dele-
tion is significant in contexts where data sensitivity requires verifiable deletion (such as regulatory compliance
or privacy mandates). The authors construct QPKE schemes that enable the sender to verify whether the re-
ceiver has deleted the decryption key, a functionality not achievable classically. The scheme relies on quantum
no-cloning and measurement principles, enabling a novel form of data protection where the receiver has to
measure (and therefore lose) certain information to demonstrate deletion. This work has implications for
privacy and data management in quantum communication networks.

7.2. Can we construct trapdoor claw free functions without LWE?
There have been attempts to construct TCFs based on conjectured hard problems on isogeny-based group actions
[AMR22]. This is the only construction we know of which is not based on lattice problems.

7.3. Can we obtain the adaptive hardcore bit properties from Ring LWE?
In [BKVV20], the authors present a proof-of-quantumness protocol that avoids relying on the adaptive hardcore bit
(AHB1) property in the random oracle model. Their construction is based on the Ring Learning with Errors (Ring
LWE) problem. However, a proof-of-quantumness protocol is considered weaker than qubit certification, which is
achieved in [BCM+21] using the AHB1 property. An open problem remains as to whether the AHB1 property can
be derived from Ring LWE.
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§A. Appendix

A.1. Proving that Lemma 6.3 =⇒ Lemma 6.2
We prove this by contradiction. Assume that there exists a quantum polynomial-time procedure A such that∣∣∣∣∣ Pr

(k,td)←GEN(1λ)
[A(k) ∈ Hs]− Pr

(k,td)←GEN(1λ)
[A(k) ∈ H̄s]

∣∣∣∣∣ = η(λ) ,

where η(λ) is some non-negligible function in the security parameter. We show that there exists a quantum
polynomial-time adversary A′ which uses A to distinguish between the two distributions D0 and D1 with some
non-negligible probability. First consider the following observation

Claim A.1. For all b ∈ {0, 1}, x ∈ X , d ∈ {0, 1}w and s ∈ {0, 1}m, the following equality holds:

d · (J(x)⊕ J(x− (−1)bs)) = Ib,x(d) · s

Proof. Let x = (x1, ...., xn) be the individual entries of the vector x. Similarly, let J(x) = (α1, α2, ...αn), where αi ∈
{0, 1}⌈log q⌉ and let let J(x − (−1)b1) = (α′1, α′2, ...α′n). The ith entry of the vector Ib,x(d) is given by (αi ⊕ α′i) · di,
where d = (d1, d2, ..., dn). Also let J(x − (−1)bs) = (β1, β2, ...βn). The bit on the LHS is obtained by taking the
sum ∑n

i=1(αi ⊕ βi).di and taking mod 2 over this sum. Let LHSi = (αi ⊕ βi).di and in a similar fashion define
RHSi = ((αi ⊕ α′i) · di mod 2) · si (s = (s1, ..., sn))

• CASE 1: [si = 0] For this case, both LHSi and RHSi evaluate to 0. (This is because if si = 0, βi = αi).

• CASE 2: [si = 1] For this case, α′i = βi and thus again both sides become the same expression.

Hence each individual bit of inner product on both sides of LHS and RHS is the same value and thus taking sum
mod 2 gives us the same value for both expressions. ■

Now we show the working of our distinguisherA′. LetA′ consist of two possible distinguishers, A′u for u ∈ {0, 1},
such that given a sample w =

(
(A, As + e), (b, x, d, c), t

)
, A′u returns 0 if c = t⊕ u and 1 otherwise. First consider

the combined advantage of distinguishers A′0 and A′1,

∑
u∈{0,1}

∣∣∣ Pr
w←D0

[A′u(w) = 0]− Pr
w←D1

[A′u(w) = 0]
∣∣∣

= 6 ∑
u←{0,1}

∣∣∣ Pr
w←D0

[A′u(w) = 0 & d ∈ Ĝsb⊕1,b,x]− Pr
w←D1

[A′u(w) = 0 & d ∈ Ĝsb⊕1,b,x]
∣∣∣

= 7
∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) ∈ Hs]−
1
2

Pr
w←D1

[d ∈ Ĝsb⊕1,b,x]
∣∣∣

+
∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) ∈ H̄s]−
1
2

Pr
w←D1

[d ∈ Ĝsb⊕1,b,x]
∣∣∣

≥ 8
∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) ∈ Hs]− Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) /∈ Hs]
∣∣∣ = η(1λ),

Hence, atleast one ofA′0 orA′1 must successfully distinguish between D0 and D1 with advantage atleast η/2, which
contradicts Lemma 6.3.

6the first equality follows from the fact that if d /∈ Ĝsb⊕1 ,b,x , then both distributions will be identical.
7Consider the case of A′0, it outputs 0 in case of w← D0 only if A outputs a tuple (b, x, d, c) ∈ Hs (Note that the condition that d ∈ Ĝsb⊕1 ,b,x is

already enforced in the tuple belonging to Hs). Also, it outputs 0 in case of w ← D1 with exactly half probability conditioned that d ∈ Ĝsb⊕1 ,b,x ,
since the bit t is completely random in this case. The other part can be similarly explained for A′1.

8Since |a− b| ≤ |a|+ |b|
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A.2. Proof of Claim 6.7

We prove this by contradiction. Assume that there exists d̂ ∈ {0, 1}n and a quantum polynomial-time procedure A
such that ∣∣∣∣∣ Pr

(A,As+e)←GENF (1λ)
[A(A, As + e) ∈ H′s,J(d̂)]−

1
2

∣∣∣∣∣ ≥ η(1λ),

where η(.) is some non-negligible function. We derive a contradiction by showing that for d̂, the two distributions
D0 and D1 in Lemma 6.6 are computationally distinguishable, giving a contradiction. First consider the following
claim:

Claim A.2. For all x ∈ X , d̂ ∈ {0, 1}n, and s ∈ {0, 1}n, the following equality holds:

J(d̂) · (J(x)⊕ J(x− s) = d̂ · s.

Proof. The proof is same as the proof of Claim A.1 in the case when bit b = 0. ■

Let A′ be the adversary that uses A to distinguish between D0 and D1. Suppose that A′ consists of two possible
distinguishers A′0 and A′1. Given a sample w = ((A, As + e), t), A′u computes c = A(A, As + e) and returns 0 if
c = t⊕ u, and 1 otherwise. The combined advantage of distinguishers A′0 and A′1 is:

∑
u∈{0,1}

∣∣∣∣∣ Pr
((A,As+e), r)←D0

[A′u((A, As + e), d̂ · s) = 0]− Pr
((A,As+e), r)←D1

[A′u((A, As + e), r) = 0]

∣∣∣∣∣
= ∑

u∈{0,1}

∣∣∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) = d̂ · s⊕ u]− Pr
((A,As+e), r)←D1

[A(A, As + e) = r⊕ u]

∣∣∣∣∣
= ∑

u∈{0,1}

∣∣∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) = d̂ · s⊕ u]− 1
2

∣∣∣∣∣
≥
∣∣∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) = d̂ · s]− Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) = d̂ · s⊕ 1]

∣∣∣∣∣
≥ 2

∣∣∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) = d̂ · s]− 1
2

∣∣∣∣∣
= 2

∣∣∣∣∣ Pr
(A,As+e)←GENF (1λ)

[A(A, As + e) ∈ H′s,J(d̂)]−
1
2

∣∣∣∣∣
≥ 2η(1λ).

Therefore, at least one of A′0 or A′1 must successfully distinguish between D0 and D1 with advantage atleast η,
which completes our contradiction.
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