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§1. Lecture 1: Introduction

This course deals with two papers:

1. Classical Verification of Quantum Computations [Mah23].

• This paper addresses the question of verification of quantum computation: given classical data that is
obtained from a quantum device that claims to have the ability to execute arbitrary quantum circuits (of
poly size), how can a classical verifier ensure that the reported data indicates the correct outcome of the
computation?

• Not all problems that can be solved in quantum polynomial time are believed to lie in the class NP - not
all quantum computations have outcomes that can be certified using an easily verifiable classical witness.

• All problems in BQP have a classical randomized polynomial time interactive verification procedure;
however, in this procedure, the prover may be asked to perform computations that are harder than BQP
(BQP⊆IP).

• However, the paper shows that every polynomial-time quantum computation can be verified by classical
PPT verifier by interacting with a quantum polynomial-time prover as long as one can ascertain that the
quantum device cannot break LWE assumption.

2. MIP*=RE [JNV+22].

• MIP* designates all those computational problems that can be decided efficiently in classical randomized
polynomial time by asking classical questions to two infinitely powerful untrusted quantum provers
sharing entanglement.

• RE denotes all problems for which there is an algorithm running in any amount of time that eventually
halts with the answer “yes” when this is the case (but it need not halt in other cases).

At their heart, both works identify means by which a classical verifier is able to certify an appropriate “quantum
computation workspace” within one or two quantum devices, using only classical interaction with it. It is like tying
a “classical leash around the quantum system.” The classical signatures of quantum processes that can be leveraged
to certify an entire computation are:

1. Uncertainty principle

2. Quantum non-locality

1.1. What is a qubit?

Definition 1.1 (Qubit, Take 1). A qubit is a triple (H, X, Z) consisting of a separable Hilbert space H and a pair of
Hermitian operators X, Z acting on a H such that X2 = Z2 = I and {X, Z} = 0 (Mutually incompatible observ-
ables).

• Separable means that the Hilbert space has a countable basis. Quantum states can also live in non-separable
H but we make this restriction for convenience.

• We also take the eigenvalues of X and Z to be ±1.

• X, Z are self inverses. So XZ = 0 is not possible. Thus {X, Z} = 0 =⇒ [X, Z] ̸= 0.

Lemma 1.1. {X, Z} = 0 =⇒ Any vector in the basis of X makes an angle of π/4 with the basis vectors of Z
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Proof. Let
∣∣ψ〉 be an eigenvector of X with eigenvalue ϵ. Then〈

ψ
∣∣ (XZ + ZX)

∣∣ψ〉 = 2ϵ
〈
ψ
∣∣ Z
∣∣ψ〉 = 0

=⇒
〈
ψ
∣∣ Z
∣∣ψ〉 = 0 (1.1)

Let Z0 and Z1 be the projectors on the positive and negative eigenspaces of Z. Then, we can write Z = Z0 − Z1.
This implies

〈
ψ
∣∣ Z
∣∣ψ〉 = 〈ψ∣∣ (Z0 − Z1)

∣∣ψ〉
=
〈
ψ
∣∣ Z0

∣∣ψ〉− 〈ψ∣∣ Z1
∣∣ψ〉

= 0 from Equation (1.1)

So, the components of
∣∣ψ〉 along the eigenspaces of Z are equal and opposite. This is equivalent to it making an

angle of π/4 with both eigenspaces of Z ■

Lemma 1.2 (Jordan’s Lemma). Let P, Q be the projections on a separable Hilbert space H. Then there exists an
orthogonal decomposition

H = ⊕iSi

such that each Si is a 1 or 2-dimensional subspace that is stable (invariant) by P and Q. Furthermore, whenever Si
is 2-dimensional, there is an orthonormal basis for it in which P and Q take the form

P =

(
1 0
0 0

)
Q =

(
c2

i cisi
cisi s2

i

)

(restricted to the subspace S) where ci = cos(θi) and si = sin(θi), θ ∈ [0, π/2) may depend on Si. In other words,
there exists a basis of Cd in which P and Q are simultaneously block diagonal.

Informally, when only two projections are concerned, we can reduce the analysis to a 2-dimensional problem. Also,
both P and Q are block diagonal matrices having the same block sizes with respect to a particular basis.

Proof. Consider R = P + Q. R is Hermitian and has an orthonormal set of eigenvectors, which forms a basis for H.
Now, let

∣∣ϕ〉 be an eigenvector of R with eigenvalue λ.

Q
∣∣ϕ〉 = R

∣∣ϕ〉− P
∣∣ϕ〉 = λ

∣∣ϕ〉− P
∣∣ϕ〉 (1.2)

Let S = span(
∣∣ϕ〉 , P

∣∣ϕ〉). We take two cases:

1. P
∣∣ϕ〉 = µ

∣∣ϕ〉. Then
∣∣ϕ〉 is a simultaneous eigenvector of P and Q due to Equation (1.2). Note that µ ∈ {0, 1}

as P is a projector. So S = span(
∣∣ϕ〉) is 1-dimensional and P, Q are either identity or 0 on S .

2. P
∣∣ϕ〉 is linearly independent of

∣∣ϕ〉. This implies Q
∣∣ϕ〉 is also linearly independent of

∣∣ϕ〉 due to Equa-
tion (1.2). Then S is stable (invariant) under P, i.e., P

∣∣ψ〉 ∈ S , ∀
∣∣ψ〉 ∈ S . Moreover,

QP
∣∣ϕ〉 = Q(R−Q)

∣∣ϕ〉 = (λ− 1)Q
∣∣ϕ〉

so S is stable under Q too.

Normalise the vectors {P
∣∣ϕ〉 ,

∣∣ϕ〉 − P
∣∣ϕ〉} to obtain the orthonormal basis {

∣∣ψ1
〉

,
∣∣ψ2
〉
} of S . It is easy to

check that P
∣∣ψ1
〉
=
∣∣ψ1
〉

and P
∣∣ψ2
〉
= 0, therefore, we can write P =

∣∣ψ1
〉〈

ψ1
∣∣.
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Let |Φ⟩ = Q
∣∣ϕ〉. Observe that Q |Φ⟩ = |Φ⟩ and Q

∣∣∣Φ⊥〉 = 0. In the basis of {
∣∣ψ1
〉

,
∣∣ψ2
〉
} we can write

|Φ⟩ = cos θi
∣∣ϕ1
〉
+ eiϕ sin θi

∣∣ϕ2
〉
= cos θi

∣∣ϕ1
〉
+ sin θi

∣∣ϕ2
〉

where we overload
∣∣ϕ2
〉

by absorbing the global
phase eiϕ into it. Also, we can assume without loss of generality that θ ∈ (0, π/2]. Take

Q = |Φ⟩⟨Φ|
= (ci

∣∣ψ1
〉
+ si

∣∣ψ2
〉
)(c∗i

〈
ψ1
∣∣+ s∗i

〈
ψ2
∣∣)

= c2
i
∣∣ψ1
〉〈

ψ1
∣∣+ cisi(

∣∣ψ1
〉〈

ψ2
∣∣+ ∣∣ψ2

〉〈
ψ1
∣∣) + s2

i
∣∣ψ2
〉〈

ψ2
∣∣

Thus we have, with respect to {
∣∣ψ1
〉

,
∣∣ψ2
〉
}

P|S =

(
1 0
0 0

)
Q|S =

(
c2

i cisi
cisi s2

i

)

Finally, since S is stable by both P and Q, it is stable under R = P + Q, so it has a basis made of eigenvectors of
R - the vector

∣∣ϕ〉 we started from, and it’s orthogonal in R. Proceeding in this way inductively lets us identify an
eigenbasis of R such that its vectors are either isolated (stable by both P and Q) or in pairs (spanning a 2D subspace
that is stable by both P and Q) ■

Lemma 1.3. Let (H, X, Z) be a qubit. Then there is a Hilbert space H′ and an isomorphism H ≃ C2 ⊗H′ such that
under the same isomorphism, X ≃ σX ⊗ I and Z ≃ σZ ⊗ I

This implies that qubits only exist in spaces of even or infinite dimension. They don’t exist in dimension 1 (all
operators commute).

Proof. Let P = 1
2 (Z + I) and Q = 1

2 (X + I). Then P, Q are projectors on H, and we can decompose them by
Lemma 1.2. Using {X, Z} = 0 it follows:

1. [P, Q] = 1
4 [X, Z]. There cannot be any 1D blocks because these necessarily commute

2. Let {|ei⟩ ,
∣∣ fi
〉
} be the basis for Si consistent with Jordan’s lemma, i.e., with respect to this basis, we have

P =

(
1 0
0 0

)
=

1
2
(I + Z) Q =

(
c2

i cisi
cisi s2

i

)
=

1
2
(I + X)

which gives

Z =

(
1 0
0 −1

)

X =

(
2c2

i − 1 2cisi
2cisi 2s2

i − 1

)
=

(
cos(2θi) sin(2θi)
sin(2θi) − cos(2θi)

)
Now using {X, Z} = 0 we obtain θ = π

4 . So, in every subspace Si, Z acts exactly as σZ and X as σX .

It is important to note that the matrices take the above form in the basis {|ei⟩ ,
∣∣ fi
〉
}. This change from the

standard basis can be performed by a similarity transformation (X → OXO†) on the operators.

Let H′ have canonical basis {|i⟩} where i ranges over the block indices in the decomposition of P and Q. The
required isomorphism is obtained by mapping

|ei⟩ ∈ H → |0⟩ ⊗ |i⟩ ∈ C2 ⊗H′∣∣ fi
〉
∈ H → |1⟩ ⊗ |i⟩ ∈ C2 ⊗H′

Observe that we crucially used that fact that the basis {|ei⟩ ,
∣∣ fi
〉
} is orthonormal and the subspaces Si are also

orthogonal. ■
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1.2. Multiple Qubits
What we mean by a system having n− qubits is that:

1. It should have n copies of one qubit, so there should be (X1, Z1), (X2, Z2), . . . , (Xn, Zn), on H such that each
pair satisfies the definition of a qubit.

2. The qubits should be independent.

Definition 1.2 (n-Qubits, Take 1). A system of n− qubits is a tuple (H, X1, Z1 . . . Xn, Zn) consisting of a separable
Hilbert spaceH and n pairs of Hermitian operators (Xi, Zi) for i ∈ [n] acting onH such that:

1. For each i ∈ [n], (H, Xi, Zi) is a qubit

2. For each i ̸= j ∈ [n], qubits i and j are independent:

[Xi, Xj] = [Zi, Xj] = [Xi, Zj] = [Zi, Zj] = 0

Let’s examine why the definition encompasses the concept of independence in terms of measurement, specifically
that the order of measurement is irrelevant. Consider a two-qubit system, and we aim to demonstrate that the ex-
pectation of measuring the second qubit in the computational basis (i.e.,

〈
ϕ
∣∣ Z2

∣∣ϕ〉) is equivalent to the expectation
of measuring the first qubit in the Hadamard basis and subsequently measuring the second qubit in the standard
basis.

After measuring the first qubit, the state is either in
X0

1

∣∣ϕ〉√〈
ϕ
∣∣X0

1X0
1

∣∣ϕ〉 with probability
〈
ϕ
∣∣X0

1X0
1

∣∣ϕ〉 or in
X1

1

∣∣ϕ〉√〈
ϕ
∣∣X1

1X1
1

∣∣ϕ〉
with probability

〈
ϕ
∣∣X1

1X1
1

∣∣ϕ〉, where X1 = X0
1 − X1

1 is the spectral decomposition of X. Therefore, the expectation
can be expressed as:

Expectation =
〈
ϕ
∣∣X0

1X0
1
∣∣ϕ〉× 〈ϕ∣∣X0

1Z2X0
1

∣∣ϕ〉〈
ϕ
∣∣X0

1X0
1

∣∣ϕ〉 +
〈
ϕ
∣∣X1

1X1
1
∣∣ϕ〉× 〈ϕ∣∣X1

1Z2X1
1

∣∣ϕ〉〈
ϕ
∣∣X1

1X1
1

∣∣ϕ〉
=
〈
ϕ
∣∣X0

1Z2X0
1
∣∣ϕ〉+ 〈ϕ∣∣X1

1Z2X1
1
∣∣ϕ〉

=
〈
ϕ
∣∣ (X0

1Z2X0
1 + X1

1Z2X1
1)
∣∣ϕ〉

=
〈
ϕ
∣∣ (X0

1Z2X0
1 + X1

1Z2X1
1 − X1

1Z2X0
1 − X0

1Z2X1
1)
∣∣ϕ〉

=
〈
ϕ
∣∣X1Z2X1

∣∣ϕ〉
=
〈
ϕ
∣∣ Z2X1X1

∣∣ϕ〉
=
〈
ϕ
∣∣ Z2

∣∣ϕ〉
The fourth equality is also a consequence of the commutator relation [X1, Z2] = 0: We have [X1, Z2] = 0. This
implies X1Z2 − Z2X1 = 0. Substituting X1 = X0

1 − X1
1 , we get X0

1Z2 − X1
1Z2 − Z2X0

1 + Z2X1
1 = 0. We left multiply

by X0
1 and right multiply by X1

1 to get X0
1Z2X1

1 − X0
1X1

1Z2X1
1 − X0

1Z2X0
1X1

1 + X0
1Z2X1

1 = 0. Since X0
1X1

1 = X1
1X0

1 = 0,
we have 2 · X0

1Z2X1
1 = 0. So, X1

1Z2X0
1 = X0

1Z2X1
1 = 0. The sixth equality is due to the fact that [X1, Z2] = 0 =⇒

X1Z2 = Z2X1.
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Lemma 1.4. Let (H, X1, Z1, . . . , Xn, Zn) be a system of n qubits. Then there exists a Hilbert spaceH′ and an isomor-
phism

H ≃ C2 ×C2 . . . C2︸ ︷︷ ︸
n times

⊗H′

such that under the same isomorphism, for every i ∈ [n] and W ∈ {X, Z},

Wi ≃ σWi ⊗ IH′

here σWi is the Pauli W operator acting on the ith copy of C2

Proof. Proof is by induction on n. Base case is proved in the previous lemma. Let (H, X1, Z1, . . . , Xn+1, Zn+1) be a
system of n + 1 qubits. Then by the induction hypothesis, we have a spaceH′ and isomorphism π′

Claim: Let W be an Hermitian operator on H such that [W, Xi] = [W, Zi] = 0, ∀i ∈ [n]. Then there exists W ′

Hermitian acting on H′ such that under π′, W ≃ I(C2)⊗n ⊗W ′. In other words, the first n qubits will be left
unchanged by the action of W

Proof. Introduce the following notation for a ∈ {0, 1}n:

σW(a) = σa1
W1
⊗ σa2

W2
· · · ⊗ σan

Wn

Now, since any linear operator U can be decomposed in the Pauli basis as U = ∑i aiσi, we can write

W = ∑
a,b∈{0,1}n

σX(a)σZ(b)⊗Wa,b

Wa,b are arbitrary operators onH′, need not be Hermitian (absorb the constant ai in Wa,b).

σX(c)σZ(d)W = ∑
a,b

σX(c)σZ(d)σX(a)σZ(b)⊗Wa,b = ∑
a,b
(−1)a·dσX(a + c)σZ(b + d)⊗Wa,b

where we used σXσZ = −σZσX . Similarly,

WσX(c)σZ(d) = ∑
a,b

σX(a)σZ(b)σX(c)σZ(d)⊗Wa,b = ∑
a,b
(−1)b·cσX(a + c)σZ(b + d)⊗Wa,b

Since W commutes with both Xi and Zi,the above equations must be equal because

σX(c)σZ(d)W = σX(c)WσZ(d) = WσX(c)σZ(d)

Now, since σX(a)σZ(b) are linearly independent, (−1)b·cWa,b = (−1)a·dWa,b. Unless a = b = 0, we can find c, d such
that (−1)b·c ̸= (−1)a·d. So

Wa,b =

{
I⊗W0,0 a, b = (0, 0)
0 Otherwise

Since W is Hermitian, hence W0,0 is Hermitian too. ■

Using the claim for W = Xn+1 and W = Zn+1 we obtain X′n+1, Z′n+1 such that (H′, X′n+1, Z′n+1) is a qubit (can verify
from the definition: W2 = I and anti-commutator is zero). Then, using Lemma 1.3, we can find the isomorphism
and compose it with π′ to obtain the induction step. ■

The statement of Lemma 1.4 can be reformulated in the language of group representation theory: The n qubit
Weyl-Hisenberg group is the 2 · 4n element group

Gn = {(−1)cσX(a)σZ(b)|a, b ∈ {0, 1}n; c ∈ {0, 1}}
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that is generated by the n qubit σX and σZ matrices. Then ϕ defined as

ϕ((−1)cσX(a)σZ(b)) = (−1)c ∏
i

Xai
i ∏

i
Zbi

i

forms a representation of Gn. The lemma can be adapted to show that any representation of Gn that in addition
send −1 7→ −1 as ϕ does, must be a direct sum of copies of the representation by Pauli matrices.

1.3. Approximate Qubits

Exercise 1.1. Suppose that X, Z are binary observables on H such that
∥∥{X, Z}

∥∥ ≤ ϵ for some ϵ ≥ 0, where ∥·∥ is
the spectral norm. Show that there exists a qubit (H, X′, Z′) such that∥∥∥X− X′

∥∥∥ ≤ δ(ϵ)
∥∥∥Z− Z′

∥∥∥ ≤ δ(ϵ)

. State the best dependence δ you can get.

Solution 1.1

Using Jordan’s Lemma, we can still decomposeH = ⊕iSi where Si are one or two-dimensional.

1. For the 1D case, since the corresponding projectors act as identity or 0 on the subspace, X′, Z′ must act
as ±I on the subspace. Hence {X, Z} = ±2 which is not possible for small enough ϵ < 2. Thus, there
cannot be any 1D subspaces.

2. For the 2D case,

X|Si
=

(
ci si
si −ci

)
Z|Si

=

(
1 0
0 −1

)
Using the condition on the norm of the anti-commutator, we obtain∥∥{XZ + ZX}

∥∥ ≤ ϵ =⇒
∥∥∥{X|Si

Z|Si
+ Z|Si

X|Si
}
∥∥∥ ≤ ϵ =⇒ 2c2 ∥I∥ ≤ ϵ =⇒ c2 ≤ ϵ

2

The qubit (H, X′, Z′) will have a decomposition

X′|Si
=

(
0 1
1 0

)
Z′|Si

=

(
1 0
0 −1

)

Since Z− Z′ = 0, we bound the norm of X− X′ by finding the largest eigenvalue of X|Si
− X′|Si

:

λ =
√

c2 + 2(1− s)− c = O(
√

ϵ)

Thus δ(ϵ) = O(
√

ϵ)

Theorem 1.5 ([CRSV17]). Let X1, Z1, · · · , Xn, Zn be binary observables onH and ϵ ≥ 0 such that

ϵ

(1− ϵ)2 ≤
1

64n

and
∥∥{Xi, Zi}

∥∥ ≤ ϵ for all i ̸= j ∈ [n] and S, T ∈ {X, Z}. Then there exists binary observables X′1, Z′1 . . . X′n, Z′n onH
such that {X′i , Z′i} = 0, [S′i , T′j ] = 0 and moreover for all i ̸= j ∈ [n] and S, T ∈ {X, Z}∥∥∥S′j − Sj

∥∥∥ ≤ 4nϵ

(1− ϵ)2 + ϵ
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§2. Lecture 2: Testing a qubit

In this section, we will be developing an operational definition of the qubit, which we can test. The condition of the
operator anti-commutator being zero is not something we can directly test based on experimental data alone. We
can only find the expectation values of some observable on a state

∣∣ψ〉 via experiment.

2.1. Interactive Proofs

Definition 2.1 (Interactive Proof System). An interactive proof system, or sometimes a “test”, for a hypothesis H is
the specification of a verifier V in an interactive protocol between V and the prover P with the following properties:
(In the protocol, both V and P may be provided with some auxiliary input: xV for V and ρP for P )

1. Completeness: whenever H (which may depend on xV or ρP) is satisfied, there is a way for an honest P to be
accepted in the protocol with high probability c ∈ [0, 1], termed as the “completeness parameter.”

2. Soundness: whenever H is false, no prover can succeed in the protocol with probability higher than a small
quantity s ∈ [0, 1], termed as the “soundness parameter.”

2.2. An operational definition of a qubit
Now, we will start using the density matrix representation for a quantum state. Since we don’t want to rule out
the possibility that the prover may share entanglement with the environment, we don’t assume that their initial
state is a pure state

∣∣ψ〉, instead, we assume
∣∣ψ〉 ∈ H⊗H′, where H′ corresponds to the space associated with the

environment.
When an interactive experiment is executed, the only observable data accessible to the experimentalist are the
expectation values. An important consequence of this is that we cannot hope to achieve a characterization of the
prover’s observable itself but instead may only make assertions about the action of the observable on the state.〈

ψ
∣∣O ∣∣ψ〉 = 〈Uψ

∣∣UOU† ∣∣Uψ
〉

Thus, the two models of the prover, using the state
∣∣ψ〉 and observable O or using

∣∣Uψ
〉

with the observable UOU†

lead exactly to the same observed data.

Definition 2.2 (Qubit, Take 2). A qubit is a triple (
∣∣ψ〉 , X, Z) such that

∣∣ψ〉 ∈ S(H), where H is a separable Hilbert
space, and X, Z are Hermitian operators onH, X2 = Z2 = I such that

{X, Z}
∣∣ψ〉 = 0

This is a weakened definition from our earlier one. We don’t require {X, Z} = 0 here.

Lemma 2.1. Let (
∣∣ψ〉 , X, Z) be a qubit inH. Then there exists a Hilbert spaceH′ and an isometry V : H → C2 ⊗H′

such that
VX

∣∣ψ〉 = (σX ⊗ I)V
∣∣ψ〉 VZ

∣∣ψ〉 = (σZ ⊗ I)V
∣∣ψ〉

An isometry (or congruence or congruent transformation) is a distance-preserving transformation between metric
spaces. Let X, Y be metric spaces with metrics dX , dY. A map f : X → Y is an isometry if for a, b ∈ X

dX(a, b) = dY( f (a), f (b))
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The lemma no longer says X ≃ σX ⊗ I, but only that it has the same action on the state up to the isometry (not
necessarily isomorphism) V. H can now have an odd dimension.

Proof. Let P =
1
2
(Z + I) and Q =

1
2
(X + I) be two projection operators. Using Jordan’s lemma, we can decompose

H = ⊕iSi into 1D and 2D subspaces such that with respect to some basis, P and Q are block diagonal matrices. Let
us also write

∣∣ψ〉 = ∑i αi
∣∣ψi
〉

where
∣∣ψi
〉
∈ Si are the basis elements.

• For 1D subspaces, {X, Z}|Si
= 2piqi where pi, qi are the appropriate diagonal elements in 2P− I and 2Q− I.

Moreover, since the projectors are either 0 or identity on the one-dimensional subspaces, we obtain pi =
±1, qi = ±1, and hence the anti-commutator is ±2. Since {X, Z}

∣∣ψ〉 = 0, this implies ({X, Z}
∣∣ψ〉)|Si

=
±2αi = 0. Hence, αi must be zero for the one-dimensional blocks.

• For the 2D subspaces, we can write, in the appropriate basis

X|Si
=

(
ci si
si −ci

)
Z|Si

=

(
1 0
0 −1

)

and we obtain {X, Z}|Si
= 2ciI =⇒ {X, Z}2

|Si
= 4c2

i I.

αi{X, Z}|Si

∣∣ψi
〉
= 0 =⇒ ∥α∥2 〈ψi

∣∣ {X, Z}2
|Si

∣∣ψi
〉
= 0 =⇒ 4c2

i α2
i = 0

Thus either αi = 0 or ci = 0

Thus, for any subspaces Si on which
∣∣ψ〉 has non-zero mass, it must be that {X, Z}|Si

= 0, as operators. In other
words, for all 1D subspaces, αi = 0. And, for the rest of non-zero αi’s, X|Si

is σX . But we cannot conclude anything
about the other 2D blocks where

∣∣ψ〉 has no mass.
The Isometry: LetH = ⊕i∈[ℓ1]

Si ⊕ Ti∈[ℓ2]
⊕i∈[ℓ3]

Ui where

• Si are the 2D subspaces where αi ̸= 0

• Ti are the 2D subspaces where ci ̸= 0

• Ui are the 1D subspaces

For basis |ei⟩ ,
∣∣ fi
〉

(wrt Jordan’s lemma) in Si, set

V |ei⟩ = |0⟩ ⊗ |i⟩

V
∣∣ fi
〉
= |1⟩ ⊗ |i⟩

For basis |ei⟩ ,
∣∣ fi
〉

(wrt Jordan’s lemma) in Ti, set

V |ei⟩ = |0⟩ ⊗ |ℓ1 + i⟩

V
∣∣ fi
〉
= |1⟩ ⊗ |ℓ1 + i⟩

For basis |ei⟩ (wrt Jordan’s lemma) in Ui, set

V |ei⟩ = |0⟩ ⊗ |ℓ1 + ℓ2 + i⟩

Observe that V is an isometry from H to C2 ⊗H′ where the dimension of H′ is ℓ1 + ℓ2 + ℓ3. Dimension of H is
2(ℓ1 + ℓ2) + ℓ3 whereas dimension of C2 ⊗H′ is 2(ℓ1 + ℓ2 + ℓ3). And VX|Si

= σX and VZ|Si
= σZ. For the rest, it

does not matter because αi = 0, so αVX|Ti
= αVX|Ui

= 0.
■

This extends to the approximate case as well:
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Exercise 2.1. Say that (
∣∣ψ〉 , X, Z) is an ϵ− approximate qubit if

∥∥∥{X, Z}
∣∣ψ〉∥∥∥ ≤ ϵ. Show that there is an isometry

V : H → C2 ⊗H′ such that for W ∈ {X, Z}∥∥∥(W −V†(σW ⊗ I)V)
∣∣ψ〉∥∥∥2

≤ O(ϵ)

Now, let’s connect the idea of interactive proofs with the above definition of a qubit.

Definition 2.3. We say a family of conditional distributions {p(·|x)}x∈X self-tests a qubit if for any state
∣∣ψ〉 ∈ S(H)

and the family of POVM {Px
a }a∈A for x ∈ X such that p(a|x) =

〈
ψ
∣∣ Px

a
∣∣ψ〉 for all a, x there is an isometry V : H →

C2 ⊗H′ and x0, z0 ∈ X such that the measurements Px0 , Pz0 have only two possible outcomes 0,1 and moreover

V(Px0
0 − Px0

1 )
∣∣ψ〉 = (σX ⊗ I)V

∣∣ψ〉 V(Pz0
0 − Pz0

1 )
∣∣ψ〉 = (σZ ⊗ I)V

∣∣ψ〉

2.3. A first test for a qubit

Figure 1: First test with quantum communication

Lemma 2.2. Suppose P succeeds in the protocol with probability 1. Then P has a qubit.

Before we go to the proof of the lemma, let us clarify a few points:

• What does it mean for the prover to have a qubit?

It means that he has (
∣∣ψ〉 , X, Z) such that {X, Z} = 0. Even a classical prover can measure the qubit in the

computational basis as soon as he gets it. This doesn’t imply he has a qubit since he cannot perform anti-
commuting measurements.

• How can the verifier prepare qubits if he is classical?

We can have a third party prepare the qubits and give one to the verifier and others to the prover. (See Fig. 2)



Interactive Proofs for Quantum Devices 11 / 27

• How do we check that the winning probability is 1?
We can never be sure, but assuming that the prover behaves in an iid fashion and by repeating the protocol
K ≈ (1/ϵ) log(1/δ) times and observing K successes, we can conclude with confidence 1− δ that the prover’s
intrinsic probability of succeeding is at least 1− ϵ. Let p be the winning probability of the prover. Then the
probability of observing K wins is pk. Taking p < 1− ϵ

Pr[K wins] < (1− ϵ)K < e−ϵK = δ

So the prover has a chance at most δ to succeed in the K repetitions.

• Is this a self-test of the qubit?
We can try to say that the family {p(v′ | θ, v) = 1v′=v} self-tests the qubit, but it doesn’t fit into the definition
for following reasons:

– It is not a 1-round protocol
– There is quantum communication between V and P
– The verifier maintains some private information v

Proof. For proving the lemma, we use the alternate protocol (Fig. 2).

Figure 2: First test modified

Both protocols are identical from the perspective of the prover.
In fact, if we use a state

∣∣ψ〉AB ∈ C2
A ⊗HB, we will show that even in this variant, to succeed, the prover must have

a qubit.
It will generally be convenient to assume that any measurement that the prover makes can be modeled by a projec-
tive measurement. This can be guaranteed by Naimark’s theorem. This is proved in Section 2.2.8 of [NC10], and
we state it here for reference:

Lemma 2.3 (Projective Measurements + Unitary Transformations = General Measurements). Let Q be a quantum
system and {Mm} be a general measurement on Q. Then these are equivalent to projective measurement Pm =
IQ ⊗ |m⟩⟨m| on the space Q⊗M where M is the ancilla space and {|m⟩} forms its orthonormal basis.
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Note that using Naimark’s may require extending the Hilbert space by adding ancilla qubits to
∣∣ψ〉. This operation

is an isometry that one should not forget to include in the conclusion one is making – it is another reason for
including the isometry V.
For each value of θ, the prover has a (projective) measurement {Pθ

0 , Pθ
1 } with associated binary observable Pθ =

Pθ
0 − Pθ

1 which he applies on his part of the state to obtain v′. The winning probability can be written as:

Pr
[
v = v′

]
=

1
2

Pr
[
v = v′|θ = 0

]
+

1
2

Pr
[
v = v′|θ = 1

]
=

1
2
(
〈
ψ
∣∣ (|0⟩⟨0| ⊗ P0

0 )
∣∣ψ〉+ 〈ψ∣∣ (|1⟩⟨1| ⊗ P0

1 )
∣∣ψ〉)

+
1
2
(
〈
ψ
∣∣ (|+⟩⟨+| ⊗ P1

0 )
∣∣ψ〉+ 〈ψ∣∣ (|−⟩⟨−| ⊗ P1

1 )
∣∣ψ〉)

Now using

|0⟩⟨0| = 1
2
(I + σZ) |1⟩⟨1| = 1

2
(I− σZ) |+⟩⟨+| = 1

2
(I + σX) |−⟩⟨−| = 1

2
(I− σX)

Pr
[
v = v′

]
=

1
2
+

1
4
(
〈
ψ
∣∣ σZ ⊗ P0 ∣∣ψ〉+ 〈ψ∣∣ σX ⊗ P1 ∣∣ψ〉)

We observe that for Pr
[
v = v′

]
= 1, we must have

〈
ψ
∣∣ σZ ⊗ P0

∣∣ψ〉 = 〈
ψ
∣∣ σX ⊗ P1

∣∣ψ〉 = 1. This implies that P0, P1

anti-commute, as is shown in the following lemma.

Lemma 2.4. 〈
ψ
∣∣ σZ ⊗ P0 ∣∣ψ〉 = 〈ψ∣∣ σX ⊗ P1 ∣∣ψ〉 = 1 =⇒ (I⊗ {P0, P1})

∣∣ψ〉 = 0

Intuitively, if P0, P1 were compatible, then since P1 can be used to predict the outcome of σX and P0 can be used to
predict the outcome of σZ, we will be able to predict the outcome of two incompatible observables by simultane-
ously measuring the compatible observables, a contradiction.

Proof. 〈
ψ
∣∣ σZ ⊗ P0 ∣∣ψ〉 = 1 =⇒

〈
ψ
∣∣ (σZ ⊗ I)︸ ︷︷ ︸
⟨ψ1|

(I⊗ P0)
∣∣ψ〉︸ ︷︷ ︸

|ψ2⟩

= 1

Now if for any unit vectors
∣∣ψ1
〉

,
∣∣ψ2
〉 〈

ψ1
∣∣ψ2
〉
= 1 then we must have

∣∣ψ1
〉
=
∣∣ψ2
〉
. So,

I⊗ P0 ∣∣ψ〉 = σX ⊗ I
∣∣ψ〉 I⊗ P1 ∣∣ψ〉 = σz ⊗ I

∣∣ψ〉
Using these

(I⊗ P0P1)
∣∣ψ〉 = (I⊗ P0)(I⊗ P1)

∣∣ψ〉
= (I⊗ P0)(σZ ⊗ I)

∣∣ψ〉
= (σZ ⊗ I)(I⊗ P0)

∣∣ψ〉
= σZσX ⊗ I

∣∣ψ〉
= −σXσZ ⊗ I

∣∣ψ〉
= −(I⊗ P1P0)

∣∣ψ〉
=⇒ (I⊗ {P0, P1})

∣∣ψ〉 = 0

■

Hence (
∣∣ψ〉 , P0, P1) is the required qubit. ■
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Exercise 2.2. Show that if P wins with probability 1− ϵ, then he has a δ(ϵ)- approximate qubit for some δ.

Exercise 2.3. The proof can be adapted to show a bit more than we extracted from it. By using Lemma 2.1, show
that under the same assumptions as in the claim there must exist an isometry V : H → C2 ⊗H′ on H under which
(IC2 ⊗V)

∣∣ψ〉 = ∣∣ϕ+
〉
⊗
∣∣ϕ′〉, where

∣∣ϕ+
〉
= |00⟩+|11⟩√

2
is an EPR pair, they must do so in order to win with probability

1.

2.4. A test for Quantum Memory
The main drawback of the above test is that it requires one qubit on the verifier’s side to test one on the prover’s
side, while we want the verifier to be classical. Also, it doesn’t extend to success probabilities less than 1. Practically,
we would expect the prover to win with probability 1− ϵ, where ϵ can be made smaller with higher confidence by
repeating the protocol.
This section will analyze a scaled-up version of the above protocol using information theoretic techniques Ap-
pendix B. This method can yield better quantitative results but allows us to certify less (only the prover’s dimension
and not the observable he uses).
Recall that the Von-Neumann entropy for state σ is given as

H(σ) = − tr(σ ln σ) = −∑
i

λi ln λi

where λi are the non-zero eigenvalues of σ.
We will also require the chain rule : H(ρA ⊗ ρB) = H(ρA) + H(ρB)

Definition 2.4 (Classical Quantum System). A system of the form:

ρXA = ∑
x

px |x⟩ ⟨x|X ⊗ ρA
x

is said to be in a cq-state.

The conditional Von-Neumann Entropy is given by

H(A | B)ρ = H(ρAB)− H(ρB)

This quantity can be negative but never more negative than the quantum dimension of B. Suppose for an arbitrary
state ρAB ∈ HA ⊗HB, we can decompose B into a classical register C and a quantum register Q:

ρB = ∑
c

pc |c⟩⟨c| ⊗ ρc ∈ HC ⊗HQ

Then ρAB = ∑c pc |c⟩⟨c|C ⊗ ρ′c where ρ′c ∈ HA ⊗HQ such that trA(ρ
′
c) = ρc.

H(A|B)ρ = H(ρAB)− H(ρB)

= H(pc) + ∑
c

pcH(ρ′c)− H(pc)−∑
c

pcH(ρc)

= ∑
c

pc(H(ρ′c)− H(ρc))

≥ min
c

(H(ρ′c)− H(ρc))

= min
c

(
H(A | Q)ρ′c

)
=⇒ H(A|B)ρ ≥ − log dimHQ
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Figure 3: Testing large quantum memory

2.4.1. A test for large quantum memory

Lemma 2.5. Suppose P succeeds in the protocol with probability 1. Then P has quantum memory of dimension 2n
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§3. Lecture 4: Testing a Qubit under Computational Assumptions

So far, everything we have done is “information-theoretic,” which means that they are independent of the model
of computation used. In this lecture, we start making assumptions of a computational nature, such as ‘this class of
adversaries cannot solve this problem.’

3.1. Computational Assumptions

3.1.1. PPT and QPT

Since our protocols involve interactions between a prover and a verifier, our computational model will consist of
several rounds, where in each round the prover or the verifier performs a computation to transition from an input
and an initial state to an output and a final state.
To understand what we mean by a verifier (or prover) to be efficient, we will need to talk about families of verifiers.
The verifier is specified by a classical Turing machine M which takes as input 1n (where n is the size parameter)
and 1λ (where λ is the security parameter) and outputs an explicit classical description of a sequence of circuits that
can be used to implement the verifier for problems of size n and with security λ. We say the verifier (prover) is
probabilistic polynomial time or PPT (quantum polynomial time or QPT) if M runs in time polynomial in n. Note
that this implies that the input size for the circuit, as well as the number of gates, is polynomial in n.

3.1.2. Claw-free functions

LetM = {0, 1}m(λ) and K = {0, 1}k(λ)

Definition 3.1 (Claw-free functions). A family F = { fpk : M →M}pk∈K is claw-free against classical (quantum)
adversaries if

• Efficient Computation: There exists a PPT procedure that given pk and x returns fpk(x)

• 2− to− 1 : For every λ ∈N and pk ∈ K, fpk is 2-to-1.

• Claw-free: For every PPT(QPT) procedure A , there exists a negligible function µ : N → N such that for
every λ the advantage of A in determining a ‘claw’ is negligible:

Pr
pk←K

[
(x0, x1)← A(1λ, pk) | x0 ̸= x1, fpk(x0) = fpk(x1)

]
≤ µ(λ)

3.1.3. Hardcore Bits

Definition 3.2 (Adaptive Hardcore Bit Assumption). There is a claw-free family of functions F = { fpk} such that
for any QPT adversary A there is a negligible function µ such that:∣∣∣∣∣ Pr

pk←K

[
(x, d)← A(1λ, pk), {x0, x1} ← f−1

pk ( fpk(x)) : d ̸= 0m and d · (x0 + x1) = 0
]
− 1

2

∣∣∣∣∣ ≤ µ(λ)

In other words, the advantage of the adversary in Fig. 4 is negligible

No quantum polynomial time algorithm can simultaneously return an element x in the domain of f and an equation
d such that letting {x0, x1} be the two pre-images of fpk(x) under fpk it holds that d ̸= 0m and d · (x0 + x1) = 0.
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Figure 4: Adaptive Hardcore Bit Game

Given a function f , a hardcore bit for f is a 1-bit function h such that given f (x) but not x, it is hard to predict
h(x). Here, the hardcore bit underlies the assumption that h(x) = d · (x0 + x1) for any d ̸= 0m. The Goldreich-
Levin Theorem implies that if f is indeed claw-free, then it is hard to predict h(x) for a random d. Further, we
call it ‘adaptive’ because we allow the adversary to choose the equation d without requiring that this equation is
uniformly distributed.

3.2. A computational test for a qubit

Assumptions

(F1) Efficient Computation: There is a 2-to-1 claw-free function family F = { fpk} equipped with an efficient key
generation procedure GEN(1λ) such that for each pk the function fpk can be evaluated efficiently.

(F2) Adaptive Hardcore Bit: The function family F satisfies Definition 3.2.

(F3) Trapdoor: In addition to pk, GEN(1λ) returns a trapdoor td, such that given (pk, td, y) where y ∈ range( fpk), it
is possible to efficiently recover two pre-images x0 and x1 of y.

(F4) Efficient Labelling Procedure: For any pk and any y in the range of fpk the tow pre-images of y are labelled
x0 and x1 using some canonical efficient procedure. Given (pk, x) where x ∈ M, it is possible to efficiently
determine if x is the x0 or the x1 pre-image of y = f (x). Let b : M→ {0, 1} be the labeling procedure; it may
depend on pk.

Theorem 3.1. Let F satisfy (F1)-(F4). Then the following hold for Fig. 5

• Completeness: There is a QPT prover that succeeds with probability 1 in the protocol.

• Soundness: Suppose a QPT prover P succeeds with probability 1 in the protocol. Then P has a (near-perfect)
qubit.

Proof.
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Figure 5: Protocol P

Completeness

It follows from the Simon’s Algorithm. The final state obtained in the algorithm is

|x0⟩+ |x1⟩√
2

∣∣ f (x)
〉

where f (x0) = f (x1) = f (x) and x0 + x1 = s. P returns y = f (x) in step 2. Now, if c = 0, he measures the first
register in the computational basis to obtain a pre-image of y. Otherwise, he measures in the Hadamard basis:

|x0⟩+ |x1⟩√
2

H⊗m
−−→ 1√

2m+1 ∑
d
((−1)x0·d + (−1)x1·d) |d⟩ = 1√

2m+1 ∑
d
(−1)x0·d(1 + (−1)(x0+x1)·d) |d⟩

Upon measuring, we obtain a |d⟩ such that d · (x0 + x1) = 0

Soundness:

Step1: Modelling Let
∣∣ψ〉 be the state of the prover at the end of step 2. Let {Πx} and {Md} be the POVM mea-

surements taken by P upon receiving c = 0 and c = 1 respectively.

• We can take Π, M to be PVM by Naimark’s Theorem.

• We assume that P has a register X with initial state |0m⟩

• Any projective measurement on
∣∣ψ〉 can be considered a unitary transformation followed by a standard basis

measurement of X. So, we take the following circuits for simulating measurement of Π and M.

• For further simplifying, take U′0 = I, U′1 = U1U†
0 and

∣∣ψ′〉 = U0
∣∣ψ〉 as the unitary transforms and the state

with P after step 2 respectively.

Step2: Establishing a Qubit
■
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§A. Quantum Interactive Proofs, Semidefinite Programs and
Multiplicative weights

Reference: [Gha21] lecture 8
There are several quantum complexity classes depending on the type of communication between the prover and
the verifier:

• BQP: No communication

• QMA: One way quantum communication from prover to verifier

• QCMA: One way classical communication from prover to verifier

• QIP: Interactive communication between prover and verifier

In this section, we will study the proof QIP=PSPACE. But before that, we study Multiplicative Weights Algorithm
and Semi-definite Programs.

A.1. The Multiplicative Weights Algorithm
If it worked once, it is likely to work again

Imagine we have a set of E of n experts, and T rounds of some process for which we wish to take the experts’ advice
into account. In each round t ∈ [T], we have a probability distributioin pt over E. We imagine that the environment
now assigns a ‘cost’ to each expert’s choice in round t denoted −1 ≤ ct

i ≤ 1.
Ideally, we would want to choose the best expert, i.e.

min
i∈[n]

T

∑
t=1

ct
i

and follow him through all the rounds. However, that is not possible practically, but we can get quite close to the
optimal.
Define the expected cost for round t as

Ct :=
n

∑
i=1

pt
i c

t
i = ⟨ct, pt⟩

and for all rounds as

C =
T

∑
t=1

Ct

Theorem A.1. Fix 0 < ϵ ≤ 1/2. Then, for any expert Ei after T rounds of the MW algorithm obtains expected cost

C ≤
T

∑
t=1

ct
i +

[
ϵ

T

∑
t=1
|ct

i |+
ln n

ϵ

]

Proof. Define potential function
Φt = ∑

i
wt

i

Upper Bound:
Φt+1 = ∑

i
wt+1

i ≤∑
i

wt
i (1− ϵct

i) = Φt(1− ϵ ∑
i

ct
i pt

i) ≤ Φte−ϵ⟨ct
i ,p

t
i ⟩
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Algorithm 1: MW Algorithm
Data: Parameters: 0 < ϵ ≤ 1/2, weights wi = 1 for Ei

1 for t = 1 to T do
2 Pick Ei with probability wt

i / ∑i wt
i ;

3 Obtain costs ct for round t from the environment;
4 Update weight of all Ei as

wt+1
i ←

{
wt

i (1− ϵ)ct
i if ct

i ≥ 0
wt

i (1 + ϵ)−ct
i if ct

i < 0

Since Φ1 = n, ΦT+1 ≤ e−ϵ ∑i⟨ct
i ,p

t
i ⟩ = e−ϵC

Lower Bound: wt
i ≥ 0 =⇒ Φt > wt

i Now

wt+1
i =

{
wt

i (1− ϵ)ct
i if ct

i ≥ 0
wt

i (1 + ϵ)−ct
i if ct

i < 0

ln
(

wt+1
i

)
= ln

(
wt

i

)
+

{
ln(1− ϵ)ct

i if ct
i ≥ 0

− ln(1 + ϵ)ct
i if ct

i < 0

Now we use the inequality ln(1− ϵ) ≥ −ϵ− ϵ2 and ln(1 + ϵ) ≥ ϵ− ϵ2

ln
(

wt+1
i

)
≥ ln

(
wt

i

)
− ϵct

i − ϵ2|ct
i |

Now use induction to prove
ln
(

wt+1
i

)
≥ ϵ ∑

t
ct

i − ϵ2 ∑
t
|ct

i |

Using this with the upper bound, we obtain the required expression. ■

Some important inequalities used in the above proof:

• (1− ϵ)x ≤ (1− ϵx) for x ∈ [0, 1]

• (1 + ϵ)−x ≤ (1− ϵx) for x ∈ [−1, 0]

• ln(1− ϵ) ≥ −ϵ− ϵ2 for 0 < ϵ ≤ 1/2

• ln(1 + ϵ) ≥ ϵ− ϵ2 for 0 < ϵ ≤ 1/2

• e−x ≥ 1− x for x > 0

A.2. Quantum Interactive Proofs

Definition A.1 (m round Quantum Verifier). An m round quantum verifier is a P-uniform circuit family Q =
{Qn,1, Qn,2, . . . , Qn,m} acting on three registers:

• An input register A containing x ∈ {0, 1}n

• A message register M consisting of p(n) qubits

• An ancilla or private register V consisting of q(n) qubits

for some polynomials p, q : N → N. We imagine the verifier acts in rounds, applying circuit Qn,i in round i ∈ [m].
Before round 1, message and private registers are initialized to zero.
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Definition A.2 (m round Quantum Prover). Same as Definition A.1 but the circuit family need not be P-uniform

Definition A.3 (Quantum Interactive Proof Systems (QIP)). A promise problem A = (Ayes,Ano,Ainv) is in QIP if
there exists a polynomial m : N→N and m-round quantum verifier satisfying for x ∈ {0, 1}n

• Completeness: x ∈ Ayes =⇒ ∃Pm acceptance probability ≥ 2/3

• Soundness: x ∈ Ano =⇒ ∀Pm acceptance probability ≤ 1/3

• Invalid: accept or reject arbitrarily

Remark. 2 rounds of communication suffice to capture the entire class of QIP. Moreover, the second message in the
protocol ( first from the verifier to the prover) can be a random toss of a fair coin.

A.3. Semidefinite Programming
Semidefinite Programming is the extension of Linear Programming to the case where the vectors are replaced by
Hermitian Matrices and the inequality constraints are replaced by ⪰

Definition A.4 (Standard Form). To define the standard form, we require the following:

1. A cost matrix C ∈ Herm(X )

2. A constraint matrix D ∈ Herm(Y)

3. A linear constraint map Ψ : Herm(X )→ Herm(Y)

Here X and Y are fixed complex vector spaces. The primal SDP is given by Table 1

Primal SDP (P) Dual SDP (D)
sup: tr(CX) inf: tr(DY)
subject to: Ψ(X) ⪯ D subject to: Ψ∗(Y) ⪰ D
X ⪰ 0 Y ⪰ 0

Table 1: Primal and Dual SDP

• The variable being optimized over is X ∈ Herm(X )

• The feasible region is the set of all “valid assignments”, i.e. those satisfying the constraints

• The objective function being maximized, tr(CX) = tr
(

C†X
)
= ⟨C, X⟩ is linear in X.

• The map Ψ must be Hermiticity Preserving for the inequalities to be well defined (positive semi-definite)

• Once an SDP is in the standard form, we can formulate the corresponding dual SDP, with the adjoint map
Ψ∗ : Herm(X )→ Herm(Y) satisfying

⟨A, Ψ(B)⟩ = ⟨Ψ∗(A), B⟩
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Examples:

1. Is I ⪰ X?

Sol: One of the methods is to show that
〈
ψ
∣∣ (I − X)

∣∣ψ〉 is PSD for any general
∣∣ψ〉 = α |0⟩+ β |1⟩.

Another way is to see that
I − X ⪰ I − ∥X∥∞ I ⪰ 0

Yet another way is
I − X = |+⟩⟨+|+ |−⟩⟨−| − (|+⟩⟨+| − |−⟩⟨−|) = 2 |−⟩⟨−|

which is PSD.

2. Is I ⪰ 2X?

Sol: Take ⟨+| (I − 2X) |+⟩

3. Let Ψ : L(Cn)→ C be the trace function. What will be Ψ∗?

Sol:
⟨A, Ψ(B)⟩ = ⟨Ψ∗(A), B⟩

=⇒ tr
(

A tr(B)
)
= tr

(
Ψ∗(A)B

)
Take Ψ∗(A) = tr(A)I. Uniqueness guarantees this is the only solution.

4. The simplest example of an SDP is the calculation of the largest eigenvalue of a Hermitian matrix C ∈
Herm(Cn)

Duality Theory

Let p and d denote the optimal values for a primal and corresponding dual SDP. These values satisfy weak duality

p ≤ d

Theorem A.2 (Slater’s constraint qualification). If there is a strictly feasible solution X (i.e. X ≻ 0, Ψ(X) ≺ D) then
strong duality (p = d) holds.

Runtime

To solve SDP in poly-time, we need the following conditions:

1. The feasible region must be contained in a ball of radius R

2. The feasible region must contain a ball of radius r

Then the runtime (Ellipsoid method) is polynomial in

• Input (encodings of C, Ψ, D)

• log R

• log 1
r

• log 1
ϵ

where ϵ is the additive error for the solution
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§B. Entropy and Information

Here, we review the concept of entropy, which is instrumental to the understanding of Quantum Information.

B.1. Shannon Entropy
Shannon Entropy of a random variable X quantifies how much information we gain, on average, after we learn the
value of X. Alternatively, it measures the amount of uncertainty we had before knowing the value of X. Both these
views are complementary. Also, the information content of a random variable should not depend on the labels
attached to the different values that the random variable may take. Thus, the entropy is defined in terms of the
probabilities and not the values of the random variable.

Definition B.1 (Shannon Entropy). Let X be a random variable having the probability distribution {pi}i∈[n]. Then
Shannon entropy of X is

H(X) = H(p1 . . . pn) = −∑
x

px log px

Intuitive justification: [NC10] Suppose we are trying to quantify how much information is provided by an event
E, which may occur probabilistically. We do this by using an information function I(E) whose value is determined
by E. Suppose the following assumptions are made about this function:

1. I(E) is a function of only the probability of E, not the outcomes themselves. So we can write I = I(p), p ∈ [0, 1]

2. I is a smooth function

3. I(pq) = I(p) + I(q) - the information gained when two independent events occur with individual probabili-
ties p, q is the sum of the information gained from each event alone.

Cauchy proved that the only continuous solution of the functional equation f (x) + f (y) = f (xy), where f (x) is
defined for all real numbers x, is the function f (x) = a log x for some constant a

B.2. Basic Properties of Entropy

B.2.1. Binary Entropy

For a Bernoulli Random variable, the binary entropy is

Hbin(p) := −p log
(

p
)
− (1− p) log

(
1− p

)
Properties:

• Hbin(0) = Hbin(1) = 0

• Hbin(p) attains its maximum value of 1 at p = 1
2

• Strict Concavity of binary entropy

Hbin(px1 + (1− p)x2) ≥ pHbin(x1) + (1− p)Hbin(x2) 0 ≤ p, x1, x2 ≤ 1

with equality only for p = 0, 1 or x1 = x2
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B.2.2. Relative Entropy

Relative entropy of two distributions p(x), q(x) is a measure of the closeness of two probability distributions.

H(p(x)||q(x)) := −∑
x

p(x) log
q(x)
p(x)

= −H(X)−∑
x

p(x) log
(
q(x)

)

Theorem B.1 (Non-negativity of Relative Entropy).

H(p(x)||q(x)) ≥ 0

with equality iff p(x) = q(x) for all x

Proof. An important inequality:
ln x ≤ x− 1

with equality iff x = 1. It can also be written as

− log(x) ≥ 1− x
ln 2

H(p(x)||q(x)) = −∑
x

p(x) log
q(x)
p(x)

≥ 1
ln 2 ∑

x
p(x)

(
1− q(x)

p(x)

)
= 0

■

Theorem B.2. Suppose X is a random variable with d outcomes. Then H(X) ≤ log(d) with equality iff X is
uniformly distributed over the d outcomes.

Proof. Let q(x) be a uniformly random distribution over the d outcomes.

H(p(x)||q(x)) = −∑
x

p(x) log

(
1

dp(x)

)
= log(d)− H(X) ≥ 0

■

Theorem B.3 (Subadditivity of Shannon Entropy).

H(p(x, y)||p(x)p(y)) = H(p(x)) + H(p(y))− H(p(x, y))

Theorem B.1 implies
H(X, Y) ≤ H(X) + H(Y)

with equality iff X, Y are independent random variables.

Proof.

H(p(x, y)||p(x)p(y)) = −∑
xy

p(xy)(log
(

p(x)
)
+ log

(
p(y)

)
)− H(p(x, y)) = H(p(x)) + H(p(y))− H(p(x, y))

■
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B.2.3. Conditional entropy and mutual information

Definition B.2 (Joint Entropy).
H(X, Y) := −∑

x,y
p(x, y) log

(
p(x, y)

)
It measures our total uncertainty about the pair (X, Y).

Definition B.3 (Conditional Entropy).
H(X | Y) := H(X, Y)− H(Y)

It measures how uncertain we are, on average, about the value of X if we know that of Y.

Definition B.4 (Mutual Information).

H(X : Y) := H(X) + H(Y)− H(X, Y) = H(X)− H(X | Y)

It measures how much information X, Y have in common. Also H(X : Y) = H(X)− H(X | Y)

Definition B.5 (Basic Properties of Shannon Entropy).

1. H(X, Y) = H(Y, X)

2. H(X : Y) = H(Y : X)

3. H(Y | X) ≥ 0 and thus H(X : Y) ≤ H(X), H(X : Y) ≤ H(Y) with equality iff Y is a function of X – Y = f (X)

4. Subadditivity H(X, Y) ≤ H(X) + H(Y) with equality iff X and Y are independent random variables.

5. H(Y | X) ≤ H(Y) and thus H(X : Y) ≥ 0 with equality iff X and Y are independent random variables.

6. Strong Subadditivity H(X, Y, Z) + H(Y) ≤ H(X, Y) + H(Y, Z) with equality iff Z → Y → X forms a Markov
chain.

7. Conditioning Reduces Entropy H(X | Y, Z) ≤ H(X | Y)

B.3. Entropic Quantum Uncertainty Principle
The uncertainty principle of quantum mechanics tells us that for observables C, D

∆(C)∆(D) ≥
|
〈
ψ
∣∣ [C, D]

∣∣ψ〉 |
2

Theorem B.4 (Entropic Uncertainty Principle). Let C, D be observables onHA and f (C, D) = maxc,d | ⟨c|d⟩ | be the
maximum fidelity between any two eigenvectors of C, D. Suppose the quantum system is prepared in the state

∣∣ψ〉.
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Then, the entropic uncertainty principle states:

H(C) + H(D) ≥ 2 log

(
1

f (C, D)

)

Here, the entropies are calculated using p(c) – the probability distribution associated with the measurement of ob-
servable C, with associated entropy H(C) and q(d) – the probability distribution associated with the measurement
of observable D, with associated entropy H(D).

• When C, D are binary observables, then f (C, D) is the cosine of the smallest angle between the eigenspaces of
C, D.

• If C, D have an eigenvector in common the f (C, D) = 1 and the RHS vanishes.

• If C, D anti-commute, then the angle between any of their vectors is π/4, and the RHS becomes 1. So there is
at least 1 bit of uncertainty between the outcomes of measuring C, D

Interpret the above result as a statement about the difficulty of a prediction task:

1. The Adversary A prepares an arbitrary state
∣∣ψ〉 and sends it to the challenger C.

2. C selects θ ← {0, 1} and measures
∣∣ψ〉 using C if θ = 0 or D if θ = 1, obtaining c or d respectively. It sends θ

to the prover P .

3. P returns its guess c′ or d′ depending on θ.

4. A succeeds if the guess is correct.

Figure 6: Uncertainty Game

If we set C to σX and D to σZ, then using Fig. 2, we can conclude that A succeeds perfectly (P and C need to share
an EPR pair before starting the game).
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Theorem B.5. Let C, D be observables on HA and f (C, D) = maxc,d | ⟨c|d⟩ | be the maximum fidelity between any
two eigenvectors of C, D. Let ρAB be an arbitrary density matrix on HA ⊗ HB. Let C(ρ), D(ρ) ∈ D(HA ⊗ HB)
denote the post-measurement states after a measurement of A using the observables C and D respectively. Then

H(A | B)C(ρ) + H(A | B)D(ρ) ≥ 2 log

(
1

f (C, D)

)
+ H(A | B)
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